2022-06-03 01:40:10

射线检验 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
其他物理学相关
其他物理学相关
编辑分类

射线检验英文:radiographic testing,通常简称为:RT,是无损检测方法的一种。

基本信息

  • 中文名称

    射线检验

  • 外文名称

    radiographic testing

  • 简称

    RT

  • 所属类型

    无损检测方法的一种

折叠 编辑本段 基本含义

当强度均匀的射线束透照射物体时,如果物体局部区域存在缺陷或结构存在差异,它将改变物体对射线的衰减,使得不同部位透射射线强度不同。

这样,采用一定的检测器(例如,射线照相中采用胶片)检测透射射线强度,就可以判断物体内部的缺陷和物质分布等,从而完成对被检测对象的检验。

射线检验常用的方法有X射线检验、γ射线检验、高能射线检验和中子射线检验。对于常用的工业射线检验来说,一般使用的是X射线检验和γ射线检验。

折叠 编辑本段 应用范围

射线检验是应用较早的材料检测方法之一。1896年,即德国物理学家伦琴 (W.K.R?ntgen)发现Χ射线的第二年,英国的霍尔-爱德华兹(Hall-EdWards)和拉德克利夫(Radcliffe)便把 X射线用于医疗诊断;不久他又将X射线用于检查金属中缺陷。

γ射线检验始于1925年,当时,皮隆 (H.Pilon)和拉博德(M.A.Laborde)用镭对蒸汽机进行射线检查。1948年以后,由于人工放射性同位素的出现,γ射线检验的应用日趋广泛。

射线检验在工业上有着非常广泛的应用,它既用于金属检查,也用于非金属检查。

对金属内部可能产生的缺陷,如气孔、夹杂、疏松、裂纹、未焊透和未熔合等,都可以用射线检查。应用的行业有承压设备、航空航天、船舶、兵器、水工成套设备和桥梁钢结构。

折叠 编辑本段 检验原理

X和γ射线的波长短,能够穿过一定厚度的物质,并且在穿透的过程中与物质中的原子发生相互作用。这种相互作用引起辐射强度的衰减,衰减的程度又同受检材料的厚度、密度和化学成分有关。

因此,当材料内部存在某种缺陷而使其局部的有效厚度、密度和化学成分改变时,就会在缺陷处和周围区域之间引起射线强度衰减的差异。如果用适当介质将这种差异记录或显示出来,就可据以评价受检材料的内部质量。

X射线检验和γ射线检验,基本原理和检验方法无原则区别,不同的只是射线源的获得方式。X射线源是由各种X射线机、电子感应加速器直线加速器构成的从低能(几千电子伏)到高能(几十兆电子伏)的系列,可以检查厚至 600mm的钢材。γ射线是放射性同位素在衰变过程中辐射出来的。

折叠 编辑本段 检验设备

折叠 X射线机

工业射线照相探伤中使用的低能X射线机,简单地说是由四部分组成:射线发生器(X射线管)、高压发生器、冷却系统、控制系统。当各部分独立时,高压发生器与射线发生器之间应采用高压电缆连接。

按照X射线机的结构,X射线机通常分为三类,便携式X射线机、移动式X射线机、固定式X射线机。

便携式X射线机采用组合式射线发生器,其X射线管、高压发生器、冷却系统共同安装在一个机壳中,也简单地称为射线发生器,在射线发生器中充满绝缘介质。整机由两个单元构成,即控制器和射线发生器,它们之间由低压电缆连接。在射线发生器中所充的绝缘介质,较早时为高抗电强度的变压器油,其抗电强度应不小于30~50kV/2.5mm。多数充填的绝缘介质是六氟化硫(SF6),以减轻射线发生器的重量。

常见的便携式X射线机如图1所示。

X射线机的核心器件是X射线管,普通X射线管主要由阳极、阴极和管壳构成。

对低压X射线机,输入X射线管的能量只有很少部分转换为X射线,大部分转换成热,所以对于X射线机来说要保证良好的散热。

折叠 γ射线机

γ射线机用放射性同位素作为γ射线源辐射γ射线,它与X射线机的一个重要不同是γ射线源始终都在不断地辐射γ射线,而X射线机仅仅在开机并加上高压后才产生X射线,这就使γ射线机的结构具有了不同于X射线机的特点。γ射线是由放射性元素激发,能量不变。

将γ射线探伤机分为三种类型:手提式、移动式、固定式。手提式γ射线机轻便,体积小、重量小,便于携带,使用方便。但从辐射防护的角度,其不能装备能量高的γ射线源

常见的手提式γ射线机如图2所示。

γ射线机主要由五部分构成:源组件(密封γ射线源)、源容器(主机体)、输源(导)管、驱动机构和附件。

γ射线机与X射线机比较具有设备简单、便于操作、不用水电等特点,但γ射线机操作错误所引起的后果将是十分严重,因此,必须注意γ射线机的操作和使用。

折叠 编辑本段 检验方法

射线检验因记录或显示介质的不同,有多种方法。常用的方法:

①胶片照相法。

用X射线胶片作为记录介质,这种方法直观、可靠,而且灵敏度较高。用X射线源时,分辨力较高(用γ射线源时,分辨力要低些),并能提供永久性记录;其缺点是成本较高。

②荧光屏观察法。

这种方法是:射线束透过物体直接照射在荧光屏上,转换成可见的图象。这种方法的优点是快速、简便、检验费用低。但由于亮度较低,难于观察细节,分辨力较差。因此多采用图象增强器,使亮度提高几千倍。如果配合工业闭路电视系统,就成为工业X射线电视。它不仅具有荧光屏观察法的优点,而且易于实现检验的自动化,主要适用于形状简单的零部件检查,不过灵敏度仍不如胶片照相法。

③还有一些应用较少的方法,如干板射线照相法、辐射测量法和高速射线照相法等。在医疗诊断上已用电子计算机控制的层析照相法(通称CT),可望应用于工业。

无论采用何种射线检验都要加强人身安全防护。

折叠 编辑本段 检验器材

射线检验主要使用的器材有胶片、增感屏、像质计、观片灯、黑度计、标记符号等。

折叠 胶片

射线胶片与普通胶片除了感光乳剂成分有所不同外,其他的主要不同是射线胶片一般是双面涂布感光乳剂层,普通胶片是单面涂布感光乳剂层;射线胶片的感光乳剂层厚度远大于普通胶片的感光乳剂层厚度。这主要是为了能更多地吸收射线的能量。但感光最慢、颗粒最细的射线胶片也是单面涂布乳剂层。

胶片主要是由片基(图3中4)、结合层(图3中3)、感光乳剂层(图3中2)、和保护膜(图3中1)组成,如图3所示。

胶片的感光特性是指胶片曝光后(经暗室处理)得到的底片黑度(光学密度)与曝光量的关系。主要的感光特性包括感光度(S)、梯度(G)、灰雾度(D0)及宽容度等,感光特性曲线集中反应了这些感光特性。

在可见光或射线照射下,胶片感光乳剂层中可以形成眼睛看不见的潜在的影像,称为"潜影",经过显影处理,潜影可转化为可见的影像。

在照相乳剂的制备过程中,在感光乳剂层中将形成"感光中心"-卤化银微粒表面的一些部分,由于存在中性银原子和硫化银而提高了对光的反应能力,它是潜影形成的基础。

在工业射线照相中使用的胶片,从大的方面分为两种类型:增感型胶片;非增感型胶片(直接型胶片)。增感型胶片是指适宜与荧光增感屏配合使用的胶片,非增感型胶片适于与金属增感屏一起使用或不用增感屏直接使用。

根据射线照相技术发展的情况,在射线照相中一般不使用增感型胶片。

折叠 增感屏

当射线入射到胶片时,由于射线的穿透能力很强,大部分穿过胶片,胶片仅吸收入射射线很少的能量。为了更多地吸收射线的能量,缩短曝光时间,在射线照相检验中,常使用前、后增感屏贴附在胶片两侧,与胶片一起进行射线照相,利用增感屏吸收一部分射线能量,达到缩短曝光时间的目的。

描述增感屏增感性能的主要指标是增感系数。

增感屏主要有三种类型:金属增感屏、荧光增感屏、复合增感屏(金属荧光增感屏)。

增感屏具有增感作用,但必须注意正确使用。使用时增感屏常分为前屏和后屏。前屏应置于胶片朝向射线源一侧,后屏置于另一侧,胶片夹在两屏之间。前屏应采用适于射线能量的厚度,后屏厚度经常较大,以便同时具有吸收背景产生的散射线的作用。为了操作的方便,实际上经常选用同样厚度的前屏和后屏,而另外在暗袋外面附加一定厚度的铅板屏蔽环境产生的散射线。

折叠 像质计

像质计(像质指示器,透度计)是测定射线照片的射线照相灵敏度的器件,根据在底片上显示的像质计的影像,可以判断底片影像的质量,并可评定透照技术、胶片暗室处理情况、缺陷检验能力等。最广泛使用的像质计主要是三种:丝型像质计、阶梯孔型像质计、平板孔型像质计。像质计应用与被检验工件相同或对射线吸收性能相似的材料制做。

关于丝的直径,各个国家一般都采用公比为 (近似为1.25)的等比数列决定的一个优选数列(ISO/R10化整值系列),并对丝径给以编号。

我国以丝型像质计为主。

使用时,丝型像质计放置的数量、位置和具体的安放方法等应符合有关标准的规定。一般的规定主要是,原则上每张底片上都应有像质计的影像,像质计应放置在工件射线源侧的表面上,且应放置在透照区中灵敏度度差的部位。当像质计放置在工件胶片侧表面时,应附加标记(一般是字母"F")。多数标准对丝型像质计的识别性都是有规定的。

折叠 其他设备和器材

为完成射线照相检验,除需要上面叙述的设备器材外,还需要其他的一些设备和器材,下面列出了另外一些常用的小型设备和器材,但这并不是全部的器材,如暗盒、药品等均未在此列出。

参考书目

ASM Metals Handbook, 8th ed.,Vol.11,Non-Destructive Inspection and Quality Control,ASM,1976. J.F.Hinsley,Non-Destructive Testing, MacDonald & Evans Ltd.,London, 1959. Richard A. Quinn, Claire C.Sigl,Radiography in Modern Industry,4th ed., Eastman Kodak Co.,Rochester, NeW York,1980.

阅读全文

热点资讯

我的关注