2022-07-05 22:32:33

直拉法 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
其他
其他
编辑分类

直拉法又称为切克劳斯基法,它是1918年由切克劳斯基(Czochralski)建立起来的一种晶体生长方法,简称CZ法。CZ法的特点是在一个直筒型的热系统汇总,用石墨电阻加热,将装在高纯度石英坩埚中的多晶硅熔化,然后将籽晶插入熔体表面进行熔接,同时转动籽晶,再反转坩埚,籽晶缓慢向上提升,经过引晶、放大、转肩、等径生长、收尾等过程,一支硅单晶就生长出来了。

基本信息

  • 中文名称

    直拉法

  • 又称

    切克劳斯基法

  • 属于

    一种晶体生长方法

  • 建立时间

    1918年

折叠 编辑本段 单晶生长

半导体圆片是从大块晶体上切割下来的,绝大多数晶体的主流生产技术是直拉生长法(Czochralski法)。这项工艺最早是由Teal在20世纪50年代初开发使用的,而在此之前,早在1918年,Czochralski采用过类似的方法,用它从熔融金属中拉制细灯丝。硅是一个单组分系统,从他开始研究晶体的生长是最容易的。

折叠 编辑本段 结晶过程

单晶硅生长中用到的材料是电子级多晶硅,它从石英(SiO2)中提炼出来并被提纯至99.999999999%纯度。在一个可抽真空的腔室内置放着一个由熔融石英制成的坩埚,多晶就装填在此坩埚中,腔室回充保护性气氛,将坩埚加热至1500°C左右。接着,一块小的用化学方法蚀刻的籽晶(直径约0.5cm,长约10cm)降下来与多晶熔料相接触,籽晶必须是严格定向的,因为它是一个复制样本,在其基础上将要生长出大块的,称为晶锭(boule)的晶体。目前的硅晶锭,直径可达300mm以上,长度有1-2m。

折叠 编辑本段 典型应用

用于硅、锗、锑化铟等半导体材料,以及氧化物和其他绝缘类型的大晶体的制备。

折叠 编辑本段 优缺点

折叠 优点

1、在生产过程中可以方便的观察晶体的生长状态。

2、晶体在熔体表面处生长,而不与坩埚相接触,这样能显著地减小晶体的应力,并防止锅壁的寄生成核。

3、可以方便的使用定向籽晶和"缩颈"工艺。缩颈后面的籽晶,其位错可大大减少,这样可使放大后生长出来的晶体,其位错密度降低。

总之,提拉法生长的晶体,其完整性很高,而生长率和晶体尺寸也是令人满意的。例如,提拉法生长的红宝石与焰熔法生长的红宝石相比,具有较低的位错密度,较高的光学均匀性,也不存在锒嵌结构。

折叠 缺点

1、高温下,石英容器会污染熔体,造成晶体的纯度降低。

2、直拉法得到的单晶中杂质大体上沿纵向变化,对分凝系数小于1的杂质,在晶体中浓度不断增加,因而也就使电阻率沿整根晶棒变化,以致不能生产出电阻率均匀的单晶体。

折叠 编辑本段 数值模拟

因晶体生长的周期很长,一般需要1~2个月时间才能完成一次完整的工业级晶体生长,但良品率不高,一般只有50%。造成失败的原因有多个方面,可能是提升速率不对,可能是温度控制不对。若采用数值仿真技术,通过计算机模拟,提前预测晶体的生长状态,对成品率的提高会有较大的帮助,对晶体炉的研发也具有重要的 现实意义。

晶体生长的仿真,因涉及多种物理场(熔化物与气体的传热、传质,湍流,热辐射相互作用,显著影响晶体的缺陷形成),多空间尺度(在熔化物与气体中存在急剧扩散、粘性、辐射、热边界层,伴有复杂的缺陷边界层)以及多时间尺度(晶体生长过程很慢,而熔体流动通过缩短时间常数来控制),非常复杂,通用型仿真软件,无法完全考虑以上这些因素。

比利时鲁汶大学的François Dupret教授,1990年发表在《J. of Heat and Mass Transfer》的一篇文章:Global modelling of heat transfer in crystal growth furnaces,详细阐述了如何建立一个晶体生长炉中全局的热传控制模型,并以锗和砷化镓炉作为模拟实例,验证了这一全局模型的准确性与效率。

借助Dupret François教授此篇文献的理论,世面上出现了几款专业的晶体生长模拟软件,例如比利时的FEMAG,俄罗斯的CGSIM,德国的CrysMas。

其中,FEMAG软件有专业的用于直拉法的模块:FEMAG/CZ,在直拉法仿真方面,具有如下的优点:

1、热传递分析:综合考虑炉内的辐射和传导、熔体对流和炉内气体流量分析

2、热应力分析:晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以静心三维的非轴对称和各向异性温度场应力分析计算,可以提出对晶体总的剪切力预估。"位错"的产生是由于晶体生长过程中,热剪应力超越临界水平而导致的塑性变形。

3、点缺陷预报:该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过冲中点缺陷的分布。

4、动态仿真:动态仿真提供了复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,动态仿真尤其是不可或缺的。

5、固液界面跟踪:在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的坩埚旋转速度和不同的提拉高度,其固液界面是不同的。

6、加热器功率预测:利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

7、绘制温度梯度:通过仿真,固液交界面的温度梯度可以很方便的计算出来。这一结果对于理论缺陷的预报是非常有用的。

阅读全文

热点资讯

我的关注