登录
2017-12-23 14:35:52

回旋加速器 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运来自动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
360百科属类别 :
仪器仪表
仪器仪表
编辑分类

回旋加速器(Cyclotron),是利用磁场使带电粒子作回旋运动,在运动中经高频电场反复加速的装置,是高能物理中的重要仪器。回旋加速器是产生正电子放射性药物的装置,该药物作为示踪剂注入人体后,医生即可通过PET/CT显像观察到患者、全身其它器官肿瘤组织的生理和病理的功能及代谢情况。所以PET/CT依靠回旋加速器生产的不同种显像药物对各种肿瘤进行特异性显像,达到对疾病的早期监测与预防。我国自主研制的第一台生产放射性同位素的回旋加速器,1996年5月9日通过了国家计委的验收。这表明我国的回旋加速器研制技术跨进了90年代国际先进水平。

基本信息

  • 中文名

    回旋加速器

  • 外文名

    Cyclotron

  • 研制成功于

    1932年首

  • 拼音

    huí xuán jiā sù qì

折叠 编辑本段 基本简介

回旋加速器是一高村岁计质节除两调多气粒子加速器。回旋加速器通过高频交流电压来加速带电粒子。大小从数英吋到数米都有。它是由欧内斯特·劳伦斯于1929年在柏克莱加州大学发明。

许多原子川免阳侵远校赵空核、基本粒子的性质有关孙金完妒激线的资讯,均是利用高能粒子轰击原子靶(atomic target)而获得的。1932年,约翰·柯克劳夫与欧内斯特·沃吞在英国送加边按制造了第一台“原子击破器”(atom smasher)。他们乃是利用700,000V的高电压对质子加速,然后再拿它们轰击锂靶。

他们采用的方法虽然较为野蛮,但确实是建构出了这么个高电压。在1929年时,劳伦斯就已经考虑贵术露占沙算财计示烟草过这种可能性:将粒子重复地经由一“相对小电压”做加速,而不是一次就用一个巨大电压去做加速。他于是与李明斯顿(M.S.Livingston)合作,发展出了回旋征孔加速器(cyclotron)。第一部回旋加速器建于1930年,稍后的改良则于1934年完成。[1]

折叠 编辑本段 球妒足当脱频帝总肥期使用

早期的加速器只能使带牛办问雷言研送雷如粒子在高压电场中加速一次,因而粒子所能达到的鲁团式如剂迅叶纪纸等的能量受到高压技术的限制。

为此,像R. Wideröe等一些加速器的先驱者在20年代,就探索制属句凯家玉信与套百利用同一电压多次加包管应我已秋判皮质批速带电粒子。

成功地演示了用同一高频电压使钠和钾离子加速二次的直线装置。

并指出重复利用这种式封话序矛影过主方式原则上可加速离子达到任意高的能量(实际上由于受到狭义相对论影响,实际只能加速到25-30MeV)。

但由于受到高频技术的限制,这样的装置太大,也太昂贵。

不适用于加速轻离子如质子、氘核等进入亚钟个交丰积迅流选聚原子核研究,结果未能得到发展应用。[2]

折叠 编辑本 理论提出

1930年劳伦特提出回旋加速器的理论,1932年首次研制成功。它的主要结构是在磁极间的真空室内有两个半圆形的金属扁盒(D形盒)隔开相对放置,D形盒上加交变电压,其间隙处产生交变电场。置于中心的粒子源产生带电粒子射出来,受到电场加速,在D形盒内不受电场,仅受磁极间磁场的洛伦兹力,在垂直磁场平交威渐识远因兴顺面内作圆周运动。绕行半圈的时间为πm/qB,其中q是粒子电荷,m是粒子的质量,B是磁场的磁感应强度。如果D形盒上所加交变电压的频率恰好等于粒子在磁场中作圆周运动的频率,则粒子绕行半圈后正赶上D形盒上电压方向转变,粒子仍处于加速装笑明状态。由于上述粒子绕战修督反由吗行半圈的时间与粒子的速度无关,因此粒子每绕行半圈受到一次加速,绕行半径增大。经过很多次加速,粒子沿螺旋形轨道从D形盒边缘引出,能量可达几十兆电子伏特(MeV )。回旋加速器的能量受制于随粒子速度增大的相对论效应,粒子的质量增大,粒子绕行周期变长,从而逐渐偏离了交变电场的加速状态。进一步的改进有同步回旋第侵远矿庆加速器

折叠 编辑本段 主要作用

(1)磁场的作用

带电粒子以某一速度垂直海吗任进入匀强磁场时,只袁绍剧杂列预酒二推在洛伦兹力作用下做乱蛋匀速圆周运动,其中周期与速率和半径无关,使带电粒子每次进劳鲜较美项攻直入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。

(2)电场的作用

回旋加速器的两个D形盒之间的窄缝区域存在周期性的变化的并垂直于两D形盒直径的匀强电场,加速就是在这个区域完成的职套统面格座运陆支村

(3)交变电压

为了保证每次带电粒子经过狭缝时均被加速,使其能量不断提高,要在狭缝处加一个与粒子运动的周期一致的交变电压。

折叠 编辑本段 应用历史

1995年中国原子能科学研究院与比利时IBA共同研制的cyc-30型回旋加速器投入使用,生产各种医用同位素。2006年6月23日,中国首台西门子eclipse HP/RD医用回旋加速器在位于广州军区总医院内的正电子药物研发中心正式投入临床运营。

eclipse HP/RD采用了深谷技术、靶体及靶系统技术、完全自屏蔽等多项前沿技术,具有高性能、低消耗、高稳定性的请力最才树双厂念优点。

回旋加速器是产生正电子放射性药物的装置,该药物作为示踪剂注入人体后,医生即可通过PET/CT显像观察到患者脑、心、全身其顾依背杆织它器官及肿瘤组织的生理和病约日校据限倒散压理的功能及代谢情况。所以PET/CT依靠回旋加速器生产的不同种显像药物对各种肿瘤进行特异性显像,达到对疾病的早期监测与预防。

折叠 编辑本段 发展县均沙井调促丝盐历程

折叠 早期

早期阶主缺市审影样略程的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。为此,象R. Wideröe等一些加速器的先驱者在20年代,就探索利用同一电压多次加速带电粒子,并成功地演示了用同一高频电压使钠和钾离子加速二次的帝宁论争且县直线装置,并指出重复利用这种方式,原则上可加速离子达到任意高的能量。但由于受到高频技术的限制,这样的装置太大,也太昂贵,也不适用于加速轻离子如质子、氘核等进房食行原子核研究,结果未能得到发展应用。

折叠 回旋加速器的理论

1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。1931年,他和他的学生利文斯顿(M. S. Livingston)一起之祖促,研制了世界上第一台回旋加速器,这台加速器的磁极直径只有10cm,加速电压为2kV,可加速氘离子达到80keV的能量,向人们证实了他们所提出的回旋加速器原理。随后,经M. Stan自该我安女职矛图李组ley Livingston资助,建造了一台25cm直径的较大回旋加速器,其被加速粒子的能量可达到1MeV。回旋加速器的光辉成就不仅在于它创造了当时人养上都管鲜存哪兵左工加速带电粒子的能量记录,更重要的是它所展示的回旋共振加速方式奠定了人们研发各种高能粒子加速器的基础

折叠 二个重要的阶段

30年代以来,回旋加速器的发展经历了两个重要的阶段。前20年,人们按照劳伦斯的原理建造了一批所谓经典回旋加速器,其中最大的可生产44MeV的α粒子或22MeV的质子。但由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过每核子20多MeV的能量范围。后来,人们基于1乱念向兵今岩鱼适际氧督938年托马斯(L. H. Thomas)提出的建议,发展了新型的回旋加速器。因此,在1945年研制的同步回旋加速器通过改变帝致假铁加速电压的频率,解决见劳菜九苏杀环了相对论的影响。利用该加速器可到丰称木真史际使被加速粒子的能量达到700MeV。使用可变的频率,回旋加速器不需要长时间使用高电压,几个周期后也同样可获得最大的能量。在同步回旋加速器中最典型的加速放德谁烟电压是10kV,并且,可通送世伯全逐酒其协举通存过改变加速室的大小(如半径、磁场),限制粒子的最大能量。

折叠 等时性回旋加速

60年代后,在世界范围掀起了研发等时性回旋加速器的高潮。等时性回旋加速器(Isochronous cyclotron)是由3个连端扇极组合(compact-pole 3 sector)的回旋加速器,能量可变,以第一和第三偕波模式对正离待停里验铁怕子进行加速。在第一偕波中,质子被加速到6 MeV~ 30 MeV, 氘核在12,5 MeV~25 MeV, α粒子在25 MeV~重油片50 MeV, He3 +2离子在18 MeV ~62 MeV 。磁场的变化通过9对圆形的调节线圈来完成,磁场的梯度与半径的比率为(4,5 - 3饭鱼市命眼额又形坐房义,5)×10-3 T/cm。磁场品争战范河丝电围减职方位角通过六对偕波线圈进行校正。RF系统由180°的两个Dee组成,其操作电压达到80kV,RF振荡器是一种典型的6级振荡器,其频率范围在8,5 - 19 MHz 。通常典型的离子源呈放射状,并且可以通过控制系统进行遥控,在中心区域有一个可以活动的狭缝进行相位调节和中心定位。使用非均匀电场的静电偏转仪(electrostatic deflector)和磁场屏蔽通道进行束流提取,在偏转仪上的最大电势可达到70 kV 。

对30 MeV强度为15 mA质子在径向和轴向的发射度(Emittance)为16p mm.mrad 。能量扩散为0.6%,亮度高,在靶内的束流可达到几百mA。用不同的探针进行束流强度的测量,这些探针有普通TV的可视性探针;薄层扫描探针和非截断式(non-interceptive)束流诊断装置。系统对束流的敏感性为1mA ,飞行时间精确到0,2 ns 。束流可以传送到六个靶位,可完成100%的传送。该回旋加速器最早在1972年由INP建造,它可使质子加速达到1 MeV,束流强度为几百mA,主要用于回旋加速器系统(离子源、磁场等)的研究。

70年代以来,为了适应重离子物理研究的需要,成功地研制出了能加速周期表上全部元素的全离子、可变能量的等时性回旋加速器,使每台加速器的使用效益大大提高。此外,近年来还发展了超导磁体的等时性回旋加速器。超导技术的应用对减小加速器的尺寸、扩展能量范围和降低运行费用等方面为加速器的发展开辟新的领域。目前的同步加速器可以产生笔尖型(pencil-thin )的细小束流,其离子的能量可以达到天然辐射能的100,000倍。通过设计边缘磁场来改变每级加速管的离子轨道半径。最大的质子同步加速器是Main Ring(500GeV)和Tevatron(1TeV)在Fermi National Accelerator Laboratory Chicago ;较高级质子同步加速器的是在Geneva的 European Laboratory for Particle Physics (CERN)安装应用的SPS(Super Proton Synchrotron), 450 GeV。

劳伦斯(E.O.Lawrence,1901-1958)因此获得1939年诺贝尔物理学奖。

阅读全文