2020-09-25 11:08:19

mos晶体管 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
词条暂无分类
编辑分类

mos晶体管,金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有MOS管构成的集成电路称为MOS集成电路。

基本信息

  • 中文名称

    mos晶体管

  • 外文名称

    Metal-Oxide-Semiconductor

折叠 编辑本段 产品介绍

金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。MOS管构成的集成电路称为MOS集成电路,而PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC

双极性晶体管的输出特性曲线形状与MOS器件的输出特性曲线相似,但线性区与饱和区恰好相反。MOS器件的输出特性曲线的参变量是VGS ,双极性晶体管的输出特性曲线的参变量是基极电流IB。衡量沟道长度调制的大小可以用厄莱(Early)电压VA表示,它反映了饱和区输出电流曲线上翘的程度。

PMOS的工作原理与NMOS相类似。因为PMOS是N型硅衬底,其中的多数载流子是电子,少数载流子是空穴,源漏区的掺杂类型是P型,所以,PMOS的工作条件是在栅上相对于源极施加负电压,亦即在PMOS的栅上施加的是负电荷电子,而在衬底感应的是可运动的正电荷空穴和带固定正电荷的耗尽层,不考虑二氧化硅中存在的电荷的影响,衬底中感应的正电荷数量就等于PMOS栅上的负电荷的数量。当达到强反型时,在相对于源端为负的漏源电压的作用下,源端的正电荷空穴经过导通的P型沟道到达漏端,形成从源到漏的源漏电流。同样地,VGS越负(绝对值越大),沟道的导通电阻越小,电流的数值越大。

NMOS一样,导通的PMOS的工作区域也分为非饱和区,临界饱和点和饱和区。当然,不论NMOS还是PMOS,当未形成反型沟道时,都处于截止区,其电压条件是: VGSVTP (PMOS), 值得注意的是,PMOS的VGS和VTP都是负值。

以上的讨论,都有一个前提条件,即当VGS=0时没有导电沟道,只有当施加在栅上的电压绝对值大于器件的阈值电压的绝对值时,器件才开始导通,在漏源电压的作用下,才能形成漏源电流。以这种方式工作的MOS器件被称为增强型(enhancement mode),又称常关闭型(normally-off) MOS晶体管。所以,上面介绍的是增强型NMOS晶体管和增强型PMOS晶体管。

除了增强型MOS器件外,还有一类MOS器件,它们在栅上的电压值为零时(VGS=0),在衬底上表面就已经形成了导电沟道,在VDS的作用下就能形成漏源电流。这类MOS器件被称为耗尽型(depletion mode),又称常开启型(normally-on) MOS晶体管。

耗尽型MOS晶体管分为耗尽型NMOS晶体管和耗尽型PMOS晶体管。对于耗尽型器件,由于VGS=0时就存在导电沟道,因此,要关闭沟道将施加相对于同种沟道增强型MOS管的反极性电压。对耗尽型NMOS晶体管,由于在VGS=0时器件的表面已经积累了较多的电子,因此,必须在栅极上施加负电压,才能将表面的电子"赶走"。同样地,对耗尽型PMOS晶体管,由于在VGS=0时器件的表面已经存在积累的正电荷空穴,因此,必须在栅极上施加正电压,才能使表面导电沟道消失。

使耗尽型器件的表面沟道消失所必须施加的电压,称为夹断电压 VP (pinch-off),显然,NMOS的夹断电压VPN0。耗尽型NMOS晶体管夹断电压VP的符号为负。增强型NMOS晶体管阈值电压VT的符号为正。

耗尽型器件的初始导电沟道的形成主要来自两个方面:①栅与衬底之间的二氧化硅介质中含有的固定电荷的感应;②通过工艺的方法在器件衬底的表面形成一层反型材料。显然,前者较后者具有不确定性,二氧化硅中的固定正电荷是在二氧化硅形成工艺中或后期加工中引入的,通常是不希望存在的。后者则是为了获得耗尽型MOS晶体管而专门进行的工艺加工,通常采用离子注入的方式在器件的表面形成与衬底掺杂类型相反(与源漏掺杂类型相同)的区域,例如,为获得耗尽型NMOS管,在P型衬底表面通过离子注入方式注入Ⅴ价元素磷或砷,形成N型的掺杂区作为沟道。由于离子注入可以精确的控制掺杂浓度,因此器件的夹断电压值具有可控性。

综上所述,MOS晶体管具有四种基本类型:增强型NMOS晶体管,耗尽型NMOS晶体管,增强型PMOS晶体管,耗尽型PMOS晶体管。在实际的逻辑电路应用中,一般不使用耗尽型PMOS晶体管。

折叠 编辑本段 开通过程

开关管的开关模式电路如图4所示,二极管可是外接的或MOS管固有的。开关管在开通时的二极管电压、电流波形如图5所示。在图5的阶段1开关管关断,开关电流为零,此时二极管电流和电感电流相等;在阶段2开关导通,开关电流上升,同时二极管电流下降。开关电流上升的斜率和二极管电流下降的斜率的绝对值相同,符号相反;在阶段3开关电流继续上升,二极管电流继续下降,并且二极管电流符号改变,由正转到负;在阶段4,二极管从负的反向最大电流IRRM开始减小,它们斜率的绝对值相等;在阶段5开关管完全开通,二极管的反向恢复完成,开关管电流等于电感电流。

电介质在决定阈值电压方面也起了重要作用。厚电介质由于比较厚而削弱了电场。所以厚电介质使阈值电压上升,而薄电介质使阈值电压下降。理论上,电介质成分也会影响电场强度。而实际上,几乎所有的MOS管都用纯二氧化硅作为gate dielectric。这种物质可以以极纯的纯度和均匀性生长成非常薄的薄膜;其他物质跟它都不能相提并论。因此其他电介质物质只有很少的应用。(也有用高介电常数的物质比如氮化硅作为gate dielectric的器件。有些作者把所有的MOS类晶体管,包括非氧化物电介质,称为insulated-gate field effect transistor(IGFET))

gate的物质成分对阈值电压也有所影响。如上所述,当GATE和BACKGATE短接时,电场就出现在gate oxide上。这主要是因为GATE和BACKGATE物质之间的work function差值造成的。大多数实际应用的晶体管都用重掺杂的多晶硅作为gate极。改变多晶硅的掺杂程度就能控制它的work function。

GATE OXIDE或氧化物和硅表面之间界面上过剩的电荷也可能影响阈值电压。这些电荷中可能有离子化的杂质原子,捕获的载流子,或结构缺陷。电介质或它表面捕获的电荷会影响电场并进一步影响阈值电压。如果被捕获的电子随着时间,温度或偏置电压而变化,那么阈值电压也会跟着变化。

折叠 编辑本段 影响因素

第一个影响阈值电压的因素是作为介质的二氧化硅(栅氧化层)中的电荷Qss以及电荷的性质。这种电荷通常是由多种原因产生的,其中的一部分带正电,一部分带负电,其净电荷的极性显然会对衬底表面产生电荷感应,从而影响反型层的形成,或者是使器件耗尽,或者是阻碍反型层的形成。Qss通常为可动正电荷。

第二个影响阈值电压的因素是衬底的掺杂浓度。从前面的分析可知,要在衬底的上表面产生反型层,必须施加能够将表面耗尽并且形成衬底少数载流子的积累的栅源电压,这个电压的大小与衬底的掺杂浓度有直接的关系。衬底掺杂浓度(QB)越低,多数载流子的浓度也越低,使衬底表面耗尽和反型所需要的电压VGS越小。

所以,衬底掺杂浓度是一个重要的参数,衬底掺杂浓度越低,器件的阈值电压数值将越小,反之则阈值电压值越高。对于一个成熟稳定的工艺和器件基本结构,器件阈值电压的调整,主要通过改变衬底掺杂浓度或衬底表面掺杂浓度进行。衬底表面掺杂浓度的调整是通过离子注入杂质离子进行。

第三个影响阈值电压的因素是由栅氧化层厚度tOX决定的单位面积栅电容的大小。单位面积栅电容越大,电荷数量变化对VGS的变化越敏感,器件的阈值电压则越小。

实际的效应是,栅氧化层的厚度越薄,单位面积栅电容越大,相应的阈值电压数值越低。但因为栅氧化层越薄,氧化层中的场强越大,因此,栅氧化层的厚度受到氧化层击穿电压的限制。选用其他介质材料做栅介质是当前工艺中的一个方向。例如选用氮氧化硅 SiNxOy 替代二氧化硅是一个微电子技术的发展方向。正在研究其它具有高介电常数的材料,称为高k栅绝缘介质。

第四个对器件阈值电压具有重要影响的参数是栅材料与硅衬底的功函数差ΦMS的数值,这和栅材料性质以及衬底的掺杂类型有关,在一定的衬底掺杂条件下,栅极材料类型和栅极掺杂条件都将改变阈值电压。对于以多晶硅为栅极的器件,器件的阈值电压因多晶硅的掺杂类型以及掺杂浓度而发生变化。

可见,在正常条件下,很容易得到增强型PMOS管。为了制得增强型NMOS管,则需注意减少Qss、Qox,增加QB。采用硅栅工艺对制做增强型NMOS管和绝对值小的增强型PMOS管有利。

折叠 编辑本段 转移特性

将MOS晶体管的栅漏连接,因为VGS=VDS,所以,VDS>VGS-VTN, 导通的器件一定工作在饱和区。这时,晶体管的电流-电压特性应遵循饱和区的萨氏方程:

IDS=KN/2·W/L·(VGS-VTN)2(1+λVDS)

即平方律关系。4种MOS晶体管的平方律转移特性如图所示,这样的连接方式在许多设计中被采用。

折叠 编辑本段 衬底偏置效应

在实际工作中,经常出现衬底和源极不相连的情况,此时,VBS不等于0。由基本的pn结理论可知,处于反偏的pn结的耗尽层将展宽。上图说明了NMOS管在VDS较小时的衬底耗尽层变化情况,图中的浅色边界是衬底偏置为0时的耗尽层边界。当衬底与源处于反偏时,衬底中的耗尽区变厚,使得耗尽层中的固定电荷数增加。由于栅电容两边电荷守衡,所以,在栅上电荷没有改变的情况下,耗尽层电荷的增加,必然导致沟道中可动电荷的减少,从而导致导电水平下降。若要维持原有的导电水平,必须增加栅压,即增加栅上的电荷数。对器件而言,衬底偏置电压的存在,将使MOS晶体管的阈值电压的数值提高。对NMOS,VTN更正,对PMOS,VTP更负,即阈值电压的绝对值提高了。

γ为衬底偏置效应系数,它随衬底掺杂浓度而变化,典型值:NMOS晶体管,γ=0.7~3.0。PMOS晶体管,γ=0.5~0.7对于PMOS晶体管,∆VT取负值,对NMOS晶体管,取正值。

对处于动态工作的器件而言,当衬底接一固定电位时,衬偏电压将随着源节点电位的变化而变化,产生对器件沟道电流的调制,这称为背栅调制,用背栅跨导gmB来定义这种调制作用的大小:

其中三个重要端口参数:gm、gds和gmb对应了MOS器件的三个信号端口G-S、D-S、B-S,它们反映了端口信号对漏源电流的控制作用。

折叠 编辑本段 防静电特性

MOS管的G极是由非常薄的一层绝缘层隔离的,因此非常容易被静电击穿(E = U/d)。虽然G对S存在着"电容",但其非常小(因为面积很小),所以稍有电荷积累就会有较高的电压,所以极容易被击穿。

阅读全文

热点资讯

我的关注