2021-09-30 16:47:38

甲基化 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
词条暂无分类
编辑分类

是指从活性甲基化合物(如S-腺苷基甲硫氨酸)上将甲基催化转移到其他化合物的过程。 可形成各种甲基化合物,或是对某些蛋白质或核酸等进行化学修饰形成甲基化产物。在生物系统内,甲基化是经酶催化的,这种甲基化涉及重金属修饰、基因表达的调控、蛋白质功能的调节以及核糖核酸(RNA)加工。

基本信息

  • 中文名

    甲基化

  • 外文名

     Methylation

  • 材料

    活性甲基化合物

  • 媒体

    甲基催化

  • 形成

    各种甲基化合物

  • 过程

    化学修饰

折叠 编辑本段 甲基化的类型:

甲基化包括DNA甲基化或蛋白质甲基化

1)DNA甲基化。[1] 脊椎动物的DNA甲基化一般发生在CpG位点(胞嘧啶-磷酸-鸟嘌呤位点,即DNA序列中胞嘧啶后紧连鸟嘌呤的位点)。[3] 经DNA甲基转移酶催化胞嘧啶转化为5-甲基胞嘧啶。人类基因中约80%-90%的CpG位点已被甲基化,但是在某些特定区域,如富含胞嘧啶和鸟嘌呤的CpG岛则未被甲基化。这与包含所有广泛表达基因在内的56%的哺乳动物基因中的启动子有关。1%-2%的人类基因组是CpG群,并且CpG甲基化与转录活性成反比。

2)蛋白质甲基化。[2] 蛋白质甲基化一般指精氨酸或赖氨酸在蛋白质序列中的甲基化。精氨酸可以被甲基化一次(称为一甲基精氨酸)或两次(精氨酸甲基转移酶(PRMTs)将两个甲基同时转移到精氨酸多肽末端的同一个氮原子上成为非对称性甲基精氨酸,或者在每个氮端各加一个甲基成为对称性二甲基精氨酸)赖氨酸经赖氨酸转移酶的催化可以甲基化一次、两次或三次。[3] 在组蛋白中,蛋白质甲基化是被研究最多的一类。在组蛋白转移酶的催化下,S-腺苷甲硫氨酸的甲基转移到组蛋白。某些组蛋白残基通过甲基化可以抑制或激活基因表达,从而形成为表观遗传。蛋白质甲基化是翻译后修饰的一种形式。

折叠 编辑本段 甲基化的功能

甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。 最常见的甲基化修饰有DNA甲基化组蛋白甲基化。

DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。研究证实,CpG二核苷酸中胞嘧啶的甲基化导致了人体1/3以上由于碱基转换而引起的遗传病。DNA甲基化主要形成5-甲基胞嘧啶(5-mC)和少量的N6-甲基腺嘌呤(N6-mA)及7-甲基鸟嘌呤(7-mG)。在真核生物中,5-甲基胞嘧啶主要出现在CpG序列、CpXpG、CCA/TGG和GATC中。

DNA甲基化是指生物体在DNA甲基转移酶(DNA methyltransferase,DMT) 的催化下,以s-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。DNA甲基化可以发生在腺嘌呤的N-6位、鸟嘌呤的N-7位、胞嘧啶的C-5位等。但在哺乳动物中DNA甲基化主要发生在5'-CpG-3'的C上生成5-甲基胞嘧啶(5mC)

在哺乳动物中CpG以两种形式存在:一种是分散于DNA序列中;另一种呈现高度聚集状态,人们称之为CpG岛(CpG island)。在正常组织里,70%~90%散在的CpG是被甲基修饰的,而CpG岛则往往是非甲基化的(除有些特殊区段和基因外)。正常情况下,人类基因组"垃圾"序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100-1000bp左右,富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且CpG岛常位于转录调控区附近,与56%的人类基因组编码基因相关,因此基因转录区CpG岛的甲基化状态的研究就显得十分重要。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1Mb就有5-15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系。

DNA甲基化主要是通过DNA甲基转移酶家族来催化完成的。研究人员在真核生物中发现了3类DNA甲基转移酶(Dnmt1、Dnmt2、Dnmt3a、Dnmt3b).Dnmt1一种是维持性甲基化酶;Dnmt2可与DNA上特异位点结合,但具体作用尚不清楚;Dnmt3a和Dnmt3b是重新甲基化酶,它们使去甲基化的CpG位点重新甲基化,即参与DNA的从头甲基化。在哺乳动物的生殖细胞发育时期和植入前胚胎期,其基因组范围内的甲基化模式通过大规模的去甲基化和接下来的再甲基化过程发生重编程,从而产生具有发育潜能的细胞;在细胞分化的过程中,基因的甲基化状态将遗传给后代细胞。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

组蛋白甲基化是指发生在H3和H4组蛋白N端Arg或Lys残基上的甲基化,由组蛋白甲基转移酶介导催化。组蛋白甲基化的功能主要体现在异染色质形成、基因印记、X染色体失活和转录调控方面。除了存在组蛋白甲基转移酶以外,还发现了去甲基化酶。先前人们认为组蛋白的甲基化作用是稳定而不可逆的,使这种去甲基化酶的发现使组蛋白甲基化过程更具动态性。

折叠 编辑本段 甲基化检测技术

曾经是2009年最值得关注的技术。

遗传上除了ATGC这四种碱基,人们对第五种碱基-甲基化的胞嘧啶的兴趣也日益增加。甲基化修饰的存在对DNA转录的调控起了重要作用,异常的甲基化往往是许多疾病的起因。既然如此重要,系统绘制甲基化组的方法自然也多了起来。甲基化组(methylome)这个词还不太常见,它指的是全基因组范围内的甲基胞嘧啶。

美国Salk生物研究院的Joseph Ecker及其同事刚刚通过高通量测序的方法,展现了一张人胚胎干细胞中所有甲基胞嘧啶的完整图谱。这是第一张单碱基分辨率的哺乳动物甲基化图谱,并伴随着mRNA和小RNA以及一些组蛋白修饰的比较分析。他们发现胚胎干细胞中近四分之一的甲基化是在非CG背景下,暗示胚胎干细胞采用不同的甲基化机制来影响基因调控。随着ES细胞的诱导分化,非CG甲基化消失,而在iPSC中还原。这张图谱为未来人类疾病和发育中的表观遗传学修饰研究打下了基础。

美国Whitehead研究院的Meissner等也曾绘制了类似的图谱。他们利用高通量的亚硫酸氢盐测序和单分子测序,产生了覆盖大部分CpG岛的DNA甲基化图谱。他们发现,DNA甲基化模式与组蛋白甲基化模式的相关性比基因组序列更好;CpG的甲基化是动态的表观遗传标志,在细胞分化期间经历大量的改变。他们还发现,胚胎干细胞和原代细胞中与发育调控相关的"弱"CpG岛在体外增殖期间经历了异常的超甲基化,让人想起某些原发肿瘤。

另外,两个独立的研究小组,分别为哈佛大学的George Church等,以及加州大学的Kun Zhang连同弗吉尼亚联邦大学的Yuan Gao等,也将传统的甲基化工具如DNA的重亚硫酸盐转化与目标基因组捕获技术和高通量测序相结合,定量测定人基因组中的甲基化。

尽管这些甲基化图谱的绘制方法略有不同,但他们都采用了亚硫酸氢盐转化,将未甲基化的胞嘧啶转化成尿嘧啶,并在随后的扩增步骤中转化成胸腺嘧啶。虽然很有效,但这种方法需要一些手工操作来确保完全的转化,并通过计算分析来绘制图谱。

在2012年2月份,英国Oxford Nanopore Technologies的科学家提出,单分子纳米孔测序可替代这种劳动密集型的技术,测序仪能直接分辨出未修饰的胞嘧啶和甲基化胞嘧啶。当核酸外切酶消化单链DNA后,单个碱基落入孔中,它们瞬间与环式糊精相互作用,并阻碍了穿过孔中的电流。每个碱基ATGC以及甲基胞嘧啶都有自己特有的电流振幅,因此很容易转化成DNA序列。这样,纳米孔技术就能直接读出这第五种碱基。

由于纳米孔测序仅限于短的寡核苷酸,因此全基因组测序还有一段很长的路要走。此外,还有一些技术障碍需要克服,比如确保碱基以正确的次序进入纳米孔,然后从另一侧离开。不过,一旦成功,第五种碱基的直接测序将会产生重大影响。[4]

折叠 编辑本段 甲基化检测方法

DNA甲基化是最早发现的基因表观修饰方式之一,真核生物中的甲基化仅发生于胞嘧啶,即在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5'-端的胞嘧啶转变为5'-甲基胞嘧啶。DNA甲基化通常抑制基因表达,去甲基化则诱导了基因的重新活化和表达。这种DNA修饰方式在不改变基因序列前提下实现对基因表达的调控。脊椎动物DNA的甲基化状态与生长发育调控密切相关,比如在肿瘤发生时,抑癌基因CpG岛以外的CpG序列非甲基化程度增加,CpG岛中的CpG则呈高度甲基化状态,导致抑癌基因表达的下降。

1、甲基化特异性的PCR(Methylation-specific PCR,MSP)

用亚硫酸氢盐处理基因组DNA,所有未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变;随后设计针对甲基化和非甲基化序列的引物进行PCR。通过电泳检测MSP扩增产物,如果用针对处理后甲基化DNA链的引物能得到扩增片段,则说明该位点存在甲基化;反之,说明被检测的位点不存在甲基化。

2、亚硫酸氢盐测序法(Bisulfite sequencing PCR,BSP)

用亚硫酸氢盐处理基因组DNA,则未发生甲基化的胞嘧啶被转化为尿嘧啶,而甲基化的胞嘧啶不变。随后设计BSP引物进行PCR,在扩增过程中尿嘧啶全部转化为胸腺嘧啶,最后对PCR产物进行测序就可以判断CpG位点是否发生甲基化称为BSP-直接测序方法。将PCR产物克隆至载体后进行测序,可以提高测序成功率,这种方法称为BSP-克隆测序法。

3、高分辨率熔解曲线法(High Resolution Melting,HRM)

在非CpG岛位置设计一对针对亚硫酸氢盐修饰后的DNA双链的引物,这对引物中间的片段包含感兴趣的CpG岛。若这些CpG岛发生了甲基化,用亚硫酸氢盐处理后,未甲基化的胞嘧啶经PCR扩增后转变成胸腺嘧啶,而甲基化的胞嘧啶不变,样品中的GC含量发生改变,从而导致熔解温度的变化(图1)。

其中,样品要求:细胞(≥106 个)、组织(≥300mg)、血液(≥1ml)、血清(≥1.5ml)等样品材料,基因组DNA(体积≥20μl,浓度≥50 ng/μl)。

参考资料

阅读全文

热点资讯