折叠 编辑本段 概念
折叠 编辑本段 定义
度分布是图论和(复杂)网络理论中都存在的概念。首先介绍图的概念。一个图是一个由两个集合和构成的二元组。集合一般由有限个元素构成,其中的元素被称为图的顶点,集合是由个元素构成的集合。集合中的每个元素都是一个非负整数。在无向图中,图中的每个元素,由图中的两个顶点和连接有条边构成。在有向图中,图中的每个元素,由图中的顶点以及有条连向顶点的边构成。并且,如果一个图中所有的都不超过1,那么称图是简单图。
网络理论的数学框架建立在图论上。网络理论中的网络其实就是图论中的图,但在网络理论中称之为网络,图的顶点在网络理论中称为节点,边被称为连结。以下仍旧以图论中的术语定义度分布。从顶点中等概率地随机抽取一个顶点,那么这个顶点度数为k的概率就是p(k)。
折叠 编辑本段 分布
折叠 编辑本段 例子
以下给出一些度分布的例子。右图是由十个顶点构成的无向图。其中度数是3的顶点有6个,度数是4的顶点有3个,度数是6的顶点有1个,所以度分布是:对于阶完全图,所有的顶点的度数都是,如果图是任意两顶点之间以概率连边的随机图,那么每个顶点都有相同的度分布。
这个分布是泊松分布。我们可以构造每个顶点的度数都是这样的概率分布的随机图模型。这样当顶点数很大的时候,度数是的顶点的个数占的比例大致是。这个分布的特点是当k很小或很大的时候,都近似于0,的值在一个特定的值处达到高峰,然后回落。也就是说,大多数的顶点的度数在这个特定值左右。然而在真实的复杂网络中,人们观察到,度分布并不像这种随机图模型显示的,聚集在某个特定值周围,而是随着k增大而以多项式速度递减,也就是遵从所谓的幂律分布:也就是说 的概率反比于 的某个幂次,其中是某个正实数。这种网络特性被称为无尺度特性。