2017-10-24 05:25:38

势垒 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
其他
其他
编辑分类

势垒(Potential Energy Barrier)是势能比附近的势能都高的空间区域,基本上就是极值点附近的一小片区域。在众多势垒当中,方势垒是一种理想的势垒。

保持ε和V的乘积不变,缩小ε,并趋于0,V将无穷大。方势垒过渡到δ势垒。在微观物理学中,δ势常作为一种理想的短程作用来讨论问题。δ势可以看成方势的一种极限情况。事实上,所有涉及δ势的问题,原则上均可以从方势情况下的解取极限而得以解决。但直接采用δ势来求解,往往要简捷得多。在δ势情况下,粒子波函数的导数是不连续的,尽管粒子流密度仍然是连续的。

基本信息

  • 中文名

    势垒

  • 外文名

    Potential Energy Barrier

  • 定义

    势能比附近的势能都高的空间区域

  • 类型

    肖特基势垒

折叠 编辑本段 肖特基势垒

金属-半导体边界上形成的具有整流作用的区域.金属-半导体作为一个整体在热平衡时有同样费米能级.由半导体到金属,电子需要克服势垒;而由金属向半导体,电子受势垒阻挡.在加正向偏置时半导体一侧的势垒下降;相反,在加反向偏置时,半导体一侧势垒增高.使得金属-半导体接触具有整流作用(但不是一切金属-半导体接触均如此.如果对于P型半导体,金属的功函数大于半导体的功函数,对于N型半导体,金属的功函数小于半导体的功函数,以及半导体杂质浓度不小于10^19/立方厘米数量级时会出现欧姆接触,它会因杂质浓度高而发生隧道效应,以致势垒不起整流作用).当半导体均匀掺杂时肖特基势垒的空间电荷层宽度和单边突变P-N结的耗尽层宽度相一致利用金属半导体接触制作的检波器很早就应用于电工和无线电技术之中,如何解释金属半导体接触时表现出的整流特性,在20世纪30年代吸引了不少物理学家的注意。德国的W.H.肖脱基、英国的N.F.莫脱、苏联的Б.И.达维多夫发展了基本上类似的理论,其核心就是在界面处半导体一侧存在有势垒,后人称为肖脱基势垒,图2示意地说明如何用肖脱基势垒模型解释整流特性,其中J代表金属中电子越过势垒ψm热发射到半导体中的电流,J代表半导体中的电子越过势垒qV热发射到金属中的电流。图2a表示没有外加电压的平衡情况,JJ相抵,总电流为零。图2b表示正向偏压的情况,这时半导体侧势垒高度降低,J(同时也是总电流)随外加电压指数增长。图2c表示加反向偏压的情况,势垒高度qV增加,J随外加电压指数减小,总电流趋向饱和值J

折叠 编辑本段 势垒贯穿与薛定谔方程

电子透过势垒的概率就可以用贯穿系数T来说明。

电子贯穿系数T随势垒宽度a的增加而迅速减小,下表给出的是(U0-E)=5eV时的具体数据。

a (nm)

T

0.1

0.1

0.5

1.7×10-

1.0

3.0×10-

势垒很宽或能量差很大或粒子质量很大时,贯穿系数T≈0,隧道效应在实际上已经没有意义,量子概念过渡到经典力学情形。因此,粒子的隧道效应是微观粒子的量子力学行为,宏观粒子是不会发生隧道贯穿效应的。

势垒电容 势垒电容 在积累空间电荷的势垒区,当PN结外加电压变化时,引起积累在势垒区的空间电荷的变化,即耗尽层的电荷量随外加电压而增多或减少,这种现象与电容器的充、放电过程相同。耗尽层宽窄变化所等效的电容称为势垒电容。 势垒电容具有非线性,它与结面积、耗尽层宽度、半导体的介电常数及外加电压有关。 势垒电容是二极管的两极间的等效电容组成部分之一,另一部分是扩散电容。 二极管的电容效应在交流信号作用下才会表现出来。 势垒电容在正偏和反偏时均不能忽略。而反向偏置时,由于少数载流子数目很少,可忽略扩散电容。

势垒电容是p-n结所具有的一种电容,即是p-n结空间电荷区(势垒区)的电容;由于势垒区中存在较强的电场,其中的载流子基本上都被驱赶出去了--耗尽,则势垒区可近似为耗尽层,故势垒电容往往也称为耗尽层电容。 耗尽层电容相当于极板间距为p-n结耗尽层厚度(W)的平板电容,它与外加电压V有关 (正向电压升高时,W减薄,电容增大;反向电压升高时,W增厚,电容减小)。因为dV ≈ W · dE = W·(dQ/ε),所以耗尽层电容为Cj = dQ/dV = ε/W。对于单边突变p+-n结,有Cj = ( qεND / 2Vbi )1/2;对于线性缓变p-n结,有Cj = (q aε2 / 12Vbi)1/3。势垒电容是一种与电压有关的非线性电容,其电容的大小与p-n结面积、半导体介电常数和外加电压有关。当在p-n结正偏时,因有大量的载流子通过势垒区,耗尽层近似不再成立,则通常的计算公式也不再适用;这时一般可近似认为:正偏时的势垒电容等于0偏时的势垒电容的4倍。不过,实际上p-n结在较大正偏时所表现出的电容,主要不是势垒电容,而往往是所谓扩散电容。 值得注意的是,势垒电容是相应于多数载流子电荷变化的一种电容效应,因此势垒电容不管是在低频、还是高频下都将起到很大的作用(与此相反,扩散电容是相应于少数载流子电荷变化的一种电容效应,故在高频下不起作用)。实际上,半导体器件的最高工作频率往往就决定于势垒电容。

阅读全文

热点资讯