2020-09-24 23:33:49

高速以太网 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
网络技术
网络技术
编辑分类

速率达到或超过100Mb/s的以太网称为高速以太网。分两类:由共享型集线器组成的共享型高速以太网系统和有高速以太网交换机构成的交换性高速以太网系统。

基本信息

  • 中文名称

    高速以太网

  • 定义

    达到或超过100Mb/s的以太网

  • 系统

    共享型,交换性

  • 优势

    全双工以太网技术

  • 情况

    两种

  • 以太网分类

    千兆以太网,万兆以太网

折叠 编辑本段 定义

速率达到或超过100Mb/s的以太网称为高速以太网。

折叠 编辑本段 以太网的内容

高速以太网的特点

高速以太网系统分两类:由共享型集线器组成的共享型高速以太网系统和有高速以太网交换机构成的交换性高速以太网系统。

100Base-FX因使用光缆作为媒体充分发挥了全双工以太网技术的优势。100Base-T的网卡有很强的自适应性,他能够自动识别能够自动识别10Mb/s和100Mb/s。

10Mb/s和100Mb/s的自适应系统是指端口之间10Mb/s和100Mb/s传输率的自动匹配功能。自适应处理过程具有以下两种情况:

(1)原有10Base-T网卡具备自动协商功能,即具有10Mb/s和100Mb/s自动适应功能,则双方通过FLP信号进行协商和处理,最后协商结果在网卡和100Base-TX集线器的相应端口上均形成100Base-TX的工作模式。

(2)原有10Base-T网卡不具备自动协商功能的,当网卡与具备10Mb/s和100Mb/s自动协商功能的集线器端口连接后,集线器端口向网卡端口发出FLP信号,而网卡端口不能发出快速链路脉冲(FLP)信号,但由于在以往的10Base-T系统中,非屏蔽型双绞线(UTP)媒体的链路正常工作时,始终存在正常链路脉冲(NLP)以检测链路的完整性。所以在新系统的自动协调过程中,集线器的10Mb/s和100Mb/s自适应端口接收到的信号是NLP信号;由于NLP信号在自动协调协议中也有说明,FLP向下兼容NLP,这样集线器的端口就自动形成了10Base-T工作模式与网卡相匹配。

高速以太网的体系结构

高速以太网的体系结构如图所示:

从OSI层次模型看,与10Mb/s以太网相同,仍有数据链路层物理层物理媒体

从IEEE802模型看,它具有MAC子层和物理层的功能。

高速以太网的类型

(1)、共享型快速以太网系统:使用共享型集线器

(2)、交换型以太网系统:使用快速以太网交换器

高速以太网的适用范围

适用于较远距离的传输

高速以太网使用的介质

光纤:作为网络的物理介质,提供基本带宽。

高密度波分多路复用:基本带宽的增倍器,提高每根光纤的通信容量

太比特交换式路由器,是大量的基本带宽转化为可用的带宽。

高速以太网的传输速率

折叠 编辑本段 以太网分类

高速以太网的传输速率最低为百兆,基本传输速率应为千兆、万兆甚至更高。

千兆以太网

在1995年后期,IEEE 802.3委员会就组建了一个工作小组,以研究在以太网的环境下如何使分组包的传输速度达到Gbit(即千兆)级。如今千兆以太网的技术标准已经成熟,并有了一些成功的应用。千兆以太网不仅仅定义了新的媒体和传输协议,还保留了10M和100M以太网的协议、帧格式,以保持其向下兼容性。随着越来越多的人使用100M以太网,越来越多的业务负荷在骨干网上承载,千兆以太网就应运而生。

千兆以太网用于连接核心服务器和高速局域网交换机。每个局域网交换机都有10/100M自适应端口和1G的上行端口。图1为千兆以太网的典型应用。

千兆以太网的协议栈结构包括物理层和介质访问层(MAC),该MAC层是802.3的MAC层算法的增强版本。除了使用非屏蔽的双绞线,对于其他媒介,都可以使用新定义的gigabit medium-independent interface (GMII),GMII是一种8bits的并行同步收发接口,它用于芯片和芯片的标准接口,可以满足不同芯片供应商对于MAC层和物理层的互连互通。

1.1 介质访问层

千兆以太网使用IEEE 802.3定义的10M/100M以太网一致的CSMA/CD帧格式和MAC层协议。以太网交换机(全双工模式)中的千兆端口不能采用共享信道方式访问介质,而只能采用专用信道方式,这是因为在专用信道方式下,数据的收发能够不受干扰地同步进行。

由于以太网交换技术的发展,不采用CSMA/CD协议也能全双工操作。千兆以太网规范发展完善了PAUSE协议,该协议采用不均匀流量控制方法最先应用于100M以太网中。

1.2 物理层

千兆以太网协议定义了以下四种物理层接口:

● 1000BASE-LX:较长波长的光纤,支持550 m长的多模光纤(62.5μm或50μm)或5 Km长的单模光纤(10μm),波长范围为1270到1355 nm;

● 1000BASE-SX:较短波长的光纤,支持275 m长的多模光纤(62.5μm)或550 m长的多模光纤(50μm),波长范围为770到860 nm;

● 1000BASE-CX:支持25 m长的短距离屏蔽双绞线,主要用于单个房间内或机架内的端口连接;

● 1000BASE-T:支持4对100 m长的UTP5线缆,每对线缆传输250M数据。

1.3 用于千兆以太网的数字信号编码技术

除非物理层是双绞线方式,千兆以太网的数字信号编码方式均是8B/10B,这种方式在发送的时候将8bits数据转换成10bits,以提高数据的传输可靠性。8B/10B方式最初由IBM公司发明并应用于ESCON(200M互连系统)中。

这种编码方式具有以下优点:

● 实现相对简单,并以廉价的方式制造可靠的收发器;

● 对于任何数字序列,相对平衡地产生一样多的0,1比特;

● 提供简便的方式实现时钟的恢复;

● 提供有用的纠错能力。

8B/10B编码是mBnB编码方式的一个特例。所谓mBnB编码即在发送端,将m bits的基带数据映射成n bits数据发送。当n > m时,在发送侧就产生了冗余性。对于8B/10B编码,即是将8bits的基带数据映射成10bits的数据进行发送,这种方式也叫做不一致控制。从本质上讲,这种方式防止在基带数据中过多的0码流或1码流,任何一方过多的码流均造成了这种不一致性。协议中还定义了12种非有效数据的序列,主要用于系统同步和其他控制用途。

对于物理层为双绞线的千兆以太网,编码方式为PAM-5(5 Level Pulse Amplitude Modulation)。PAM-5采用5种不同的信号电平编码来代替简单的二进制编码,可以达到更好的带宽利用。每四个信号电平能够表示2个bits信息,再加上第五个信号电平用于前向纠错机制。

万兆以太网

千兆以太网还没有大规模应用的时候,人们已经提出万兆以太网的概念。特别是Internet和Intranet上的业务流量呈爆炸式的增长,万兆以太网的协议研究及工程实现就越发迫切起来。目前造成Internet和Intranet上业务流量快速增长的几个因素如下:

● 网络连接数的增加;

网络终端的连接速率的增加(例如10M网用户升级到100M网用户,56K的Modem用户升级到xDSL或Cable Modem用户);

● 对带宽要求高的业务的增加,例如高清晰度的视频点播业务;

● 网络主机的增加及主机业务的增加。

最初,运营商们主要将万兆以太网应用于大容量的以太网交换机间的高速互连,随着带宽需求的增长,万兆以太网将应用于整个网络,包括应用服务器,骨干网和校园网。这种技术使得ISP和NSP能够以一种廉价的方式提供高速的服务。

这种技术同时可以应用于城域网广域网的建设,这样局域网技术就能够与ATM或其他广域网络技术竞争。在大多数情况下,用户需要数据通过TCP/IP实现全网的无缝连接,从用户终端到网络业务提供者,而万兆以太网真正做到这一点。由于不需要将以太网的分组包分拆或重组成ATM信元,避免了带宽的浪费,这种网络真正做到端到端的以太网。

IP技术和万兆以太网技术的结合不仅仅能够提供高质量的服务,同时能够进行有效的流量控制,而在以前只有ATM能够做到。

根据万兆以太网的应用场合不同,已经定义了不同的光纤接口(光纤的波长和传输距离)。最大的传输距离从300 m一直到40 km,并采用了多种光纤介质,以全双工方式运行。图2比较了几种不同以太网端口速率的最大传输距离。

另外,万兆以太网具有以下几个显著特征:

万兆以太网不再支持半双工数据传输,所有数据传输都以全双工方式进行,这不仅极大地扩展了网络的覆盖区域,而且使标准得以大大简化。

● 为使万兆以太网不但能以更优的性能为企业骨干网服务,更重要的是,还要从根本上对广域网以及其它长距离网络应用提供最佳支持,尤其是还要与现存的大量SONET网络兼容,该标准对物理层进行了重新定义,使得其兼容性大大提高。

● 网络费用是决定一种网络技术发展速度的重要因素。竞争和规模效应使以太网设备的价格很快下降。尽管快速以太网产品从1994年才进入市场,但是最近两年,这些产品的价格也大幅度下降。10G以太网的价格趋势也会与快速以太网一样。IEEE的目标是以两到三倍的100Base-FX接口的价格建立10G以太网连接。

折叠 编辑本段 存在的问题

尽管10G以太网在提供基于以太网的广域网方面向前迈出了非常重要的一步,但要作为城域网的全面解决方案还是缺乏一些关键的性能。在城域网中,10G以太网还面临着其他一些挑战。

以太网因为其数据包最优化而著称,这种技术对于共享访问和突发性业务流量是非常有效的。但是10G以太网难于支持多业务,因为它缺乏QoS能力。RSVP和IEEE802.1P能提供QoS,但是仍无法和的ATM技术的QoS相比。服务供应商们可能会在城域网中继续使用SONET/SDH技术。

建立多业务城域网的另一种方法是使用DWDM,让一部分波长载运10G以太网,另一部分载运其他业务流比如SONET/SDH,以及多个千兆以太网数据流。虽然与千兆以太网相比,10G以太网网络的可扩展性因为速度和传输距离的提高而得到了提高,但这些改进在本质上仍然是有限的。当带宽的需求扩展到OC-768(或者是40Gbps)时,问题还没有解决。此外,考虑到城域网的复杂性不断增加,所以必须进行流量工程设计。DWDM的MPLamda与10G以太网的多协议标记交换(MPLS)技术共同提供了这一至关重要的业务流量工程设计能力。

总之, 虽然10G以太网的容量和传输距离得到了很大提高,但是,无法解决新型城域网对多业务的要求,同时,在传输距离进一步提高的情况下,难以应付。

根据现在最新的消息:前不久,IEEE投票反对把802.3ae(10G以太网)标准更快地进行通过,因为他们认为零部件销售商还没有足够的设备能够通过标准测试。虽然存在一些程序上的小问题,但标准化草案在技术上是切实可行的。事实上,10G以太网标准方案已经完全成熟。IEEE暂停此方案进入最后批准阶段并不是因为技术原因,而仅仅是程序操作的问题。按计划在2002年3月前通过仍然是很有可能的。

阅读全文

热点资讯

我的关注