2021-09-18 18:09:12

调制 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
电子技术
电子技术
编辑分类

调制在生物化学与分子生物学中有以下几个意义:(1)细胞分化和功能状态的可逆改变。(2)生物活性物质对细胞的调节作用。(3)细胞(主要是免疫活性细胞)受生物活性物质(如细胞因子)作用而发生的功能性变化。(4)特异基因的转录频率的调节。(5)由密码子造成信使核糖核酸(mRNA)翻译速率减低的调节。(6) 效应物调节酶的控制。 在通信科技 中是指有意或无意地使表征一振荡或波的量随着一信号或另一振荡或波的变化而变化的过程。

基本信息

  • 中文名称

    调制

  • 外文名称

    modulation]

  • 拼音

    tiao zhì

  • 释义

    调配制造

折叠 编辑本段 释义

词目:调制

拼音:

基本解释

为了传送信息(如在电报、电话、无线电广播或电视中)而对周期性或断续变化的载波或信号的某种特征(如振幅、频率或相位)所作的变更。

详细解释

1.调配制造。如:根据医生的处方调制药丸。

2.调查编制。梁启超《国会开会期与会计度开始期》:"而各部大臣之调制概算书,必须在四月以前。" 章裕昆《文学社武昌首义纪实·文学社与共进会之联合会议》:"军事筹备员则调制 武昌 街道图,预定分布队伍及首事一切方略。"

折叠 编辑本段 概念

调制(modulation)就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。

折叠 编辑本段 种类

调制的种类很多,分类方法也不一致。按调制信号的形式可分为模拟调制和数字调制。用模拟信号调制称为模拟调制;用数据或数字信号调制称为数字调制。按被调信号的种类可分为脉冲调制、正弦波调制和强度调制(如对非相干光调制)等。调制的载波分别是脉冲,正弦波和光波等。正弦波调制有幅度调制、频率调制和相位调制三种基本方式,后两者合称为角度调制。此外还有一些变异的调制,如单边带调幅、残留边带调幅等。脉冲调制也可以按类似的方法分类。此外还有复合调制和多重调制等。不同的调制方式有不同的特点和性能。

折叠 正弦波幅度调制

正弦载波幅度随调制信号而变化的调制,简称调幅(AM)。数字幅度调制也叫作幅度键控(ASK)。调幅的技术和设备比较简单,频谱较窄,但抗干扰性能差,广泛应用于长中短波广播、小型无线电话、电报等电子设备中。

早期的无线电报机采用火花式放电器产生高频振荡。传号时火花式发报机发射高频振荡波,空号时发报机没有输出。这种电报信号的载波不是纯正弦波,它含有很多谐波分量,会对其他信号产生严重干扰。

理想的模拟正弦波调幅是:载波幅度与调制信号瞬时值ua(t)成线性关系,但载频fC=ωC/2π和相位ψ保持不变。单频调制时,调幅信号uA(t)可用下式表示:uA(t)=UC(1+macosΩt)cos(ωCt+ψ) (1)

式中UC是载波幅度;Ω=2πF,是调制信号的角频率,其中F是调制信号频率;ma是一个和调制信号幅度Ua成比例的常数,叫作调幅系数,数值应在0~1之间。图1a、图b、图c分别是单频调制信号ua(t)、载波信号uc(t)和调幅波 uA(t)的波形。调幅波的瞬时幅度变化曲线叫作包络线。调幅系数ma不能大于1,否则包络线和调制信号不能保持线性关系,会产生失真。这种情况叫做过调幅。

式(1)的调幅波不是单一的简谐波,它包含fC、fC+FfC-F三个频率分量。后两个频率分量位于载频fC的两边,分别叫作上边频和下边频(图2c)。这种已调制信号有时叫作标准调幅波。如果调制信号占有一个频带,最高频率为Fmax,则标准调幅波的频谱宽度BWA=2Fmax,位于载频fC两边的频带分别称为上边带和下边带。调幅波的载频分量与调制信号无关,但边带分量随调制信号变化。这意味着所欲传送的消息都包含在边带之中,只用一个边带信号就能够传送全部消息。把载波去掉的调幅信号,叫做抑制载波调幅;把载波和某一个边带一起抑制掉,只剩下一个边带的调幅信号,叫做单边带调幅(SSB)。单边带调幅节省功率,抗干扰性能较好,而且节省频带,但设备比较复杂(见单边带调制)。

折叠 正弦波频率调制

正弦载波的瞬时频率随调制信号的瞬时值而变化的调制,简称调频(FM)。数字频率调制也称移频键控(FSK)。

调频是1933年E.H.阿姆斯特朗发明的。这种调制具有良好的抗干扰性能,广泛用于高质量广播、电视伴音、多路通信和扫频仪等电子设备中。

理想的调频是:载波的瞬时角频率ω与调制信号瞬时值ua(t)成线性关系,而幅度UC不变。单频调制时,瞬时角频率ω的表示式是

ω =ωC+墹ω cosΩt (2)

式中墹ω=kf Ua,是一个和调制信号幅度Ua成正比的常数,称为最大角频率偏移。图3是调频波的波形。调频波的表示式是

(3)式中φ0是载波的初始相位;墹ω/Ω=mf称调频指数,它可以是任何正数。mf很大时,调频波的频谱很宽,这种情况叫作宽带调频。

正弦波调频后也产生新的频率分量,这些分量和调频指数mf有关。在理论上单频调频时调频波具有无穷多个边频分量,相邻两边频的距离等于F。通常把幅度小于载波原来幅度 1/100的边频分量忽略不计,有效边频分量所占据的频带为调频波的带宽。

图4是单频调制时调频波的频谱。mf很小时,载频分量较大,边频幅度很小;mf增大时,载频幅度减小,边频幅度增大,幅度大的边频数也增多;mf继续增加时,载频和各边频的幅度交替增减,这些频率分量的幅度是以mf为宗数的各阶贝塞尔函数。

在实用中,调制信号ua(t)的最大值通常保持不变,因此最大频移墹f也不变。这时mf随调制信号频率F而减小。图5是墹f为定值时调频波的频谱。F小时,相邻各频率分量的距离较小,但由于mf较大,有效的边频分量较多;F较大时,各边频的距离增大,但mf却减小,有效的频率分量也较少。因此调频波的频谱宽度大体上保持不变。这是调频波的特点。它的频谱宽度BWf可以用下面的经验公式来计算

BWf≈2(mf+1)F (4)

式中F=Ω/2π,是调制信号的频率。当mf较大时,调频波的带宽约等于最大频偏墹f的两倍。

宽带调频具有较强的抗干扰性能。1933年阿姆斯特朗证明:当输入信噪比Si/Ni较大时,调频接收机的输出信噪比SO/NO与最大频移墹f的平方成正比;增加调频波的带宽可以改善通信系统的质量。不过这种改善是有限度的,因为带宽过大时,调频接收机的内部噪声Ni增加,Si/Ni减小;当Si/Ni降低到某一阈值时,SO/NO反而急剧变坏。图6是调频接收机输出信噪比SO/NO与输入信噪比Si/Ni的关系曲线,在曲线拐点左边,调频的抗干扰性能比调幅还差。利用预加重和反馈调频接收的方法可以使SO/NO得到改善。

折叠 正弦波相位调制

正弦载波的瞬时相位随调制信号而变化的调制,简称调相(PM)。数字调相也称移相键控(PSK)。

单频调相时,理想调相波uφ(t)的表示式是

uφ(t)=UCcos(ωCt+墹φcosΩt+φ0) (5)

式中墹φ载波相位随调制信号而变化的最大相移,称调相指数。它与调制信号幅Ua成正比,但与调制角频率Ω无关。这是调相和调频的区别。调相波的频谱与调频波相似,但是当墹φ为定值时,其频谱宽度BWφ随Ω而变化,Ω大时频谱宽,Ω小时频谱窄。因此频带不能充分利用。数字调相具有优越的抗干扰性能,而且频带窄,是一种比较理想的调制方式,在各种数据传输和数字通信系统中得到广泛应用。

折叠 脉冲调制

受调波为脉冲序列的调制。脉冲调制可分为脉冲调幅(PAM)、脉冲调相(PPM)、脉冲调宽(PWM)等方式。图7是一些脉冲调制信号的波形。通常把模拟-数字信号转换也看做是脉冲调制,这种调制有脉码调制(PCM)、差值脉码调制(DPCM)、增量调制(墹M)等。脉冲调幅实质上就是信号采样。常用于模-数转换电路、信号转换电路和各种电子仪器(如采样示波器等)。

脉冲调制信号的频谱较宽,但除了脉冲调幅之外,都具有较好的抗干扰性能,特别是脉码调制的性能最好,是一种理想的调制方法。数字电话、遥测、遥控以及迅速发展的综合通信网,大多采用这种调制。

折叠 编辑本段 展望

调制在电子学中是非常重要的。引人注目的发展动向是:①由于数字业务的不断增加,数字通信系统的容量需要不断扩充,这就必须发展超高速率的数字调制技术;②为了充分利用无线电频谱资源,要求进一步研究频谱效率高的和误码率低的调制方式;③在相干光通信和光盘存储设备方面,光相位调制、频率调制和偏振调制等的研究也是重要的研究课题。

折叠 编辑本段 作用

调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。

折叠 编辑本段 调制方式

在通信中,我们常常采用的调制方式有以下几种:

(一)模拟调制:用连续变化的信号去调制一个高频正弦波

主要有:1.幅度调制(调幅AM,双边带调制DSBSC,单边带调幅SSBSC,残留边带调制VSB以及独立边带ISB);

2.角度调制(调频FM,调相PM)两种。因为相位的变化率就是频率,所以调相波和调频波是密切相关的;

(二)数字调制:用数字信号对正弦或余弦高频振荡进行调制

主要有:1.振幅键控ASK;

2.频率键控FSK;

3.相位键控PSK;

(三)脉冲调制:用脉冲序列作为载波

主要有:1.脉冲幅度调制(PAM:Pulse Amplitude Modulation);

2.脉宽调制(PDM:Pulse Duration Modulation);

3.脉位调制(PPM:Pulse Position Modulation);

4.脉冲编码调制(PCM:Pulse Code Modulation) ;

随着通信业务量的增加,频谱资源日趋紧张,为了提高系统的容量,信道间隔已由最初的100kHz减少到25kHz,并将进一步减少到12.5kHz,甚至更小,由于数字通信具有建网灵活,容易采用数字差错控制技术和数字加密,便于集成化,并能够进入ISDN网,所以通信系统都在由模拟制式向数字制式过渡。

因此系统中必须采用数字调制技术,然而一般的数字调制技术,如ASK、PSK和FSK因传输效率低而无法满足移动通信的要求,为此,需要专门研究一些抗干扰性强、误码性能好、频谱利用率高的数字调制技术,尽可能地提高单位频谱内传输数据的比特率,以适用于移动通信窄带数据传输的要求。如

最小频移键控(MSK-Minimum Shift Keying);

高斯滤波最小频移键控(GMSK-Gaussian Filtered Minimum Shift Keying);

四相相移键控(QPSK-Quadrature Reference Phase Shift Keying);

交错正交四相相移键控(OQPSK-Offset Quadrature Reference Phase Shift Keying);

四相相对相移键控(DQPSK-Differential Quadrature Reference Phase Shift Keying);

π/4正交相移键控(π/4-DQPSK-Differential Quadrature Reference Phase Shift Keying);

已在数字蜂窝移动通信系统中得到广泛应用。

阅读全文

热点资讯