折叠 编辑本段 简单过程
糖酵解是指将葡萄糖或糖原分解为丙酮酸,ATP和NADH+H的过程,此过程中伴有少量ATP的生成。这一过程是在细胞质中进行,不需要氧气,每一反应步骤基本都由特异的酶催化。在缺氧条件下丙酮酸则可在乳酸脱氢酶的催化下,接受磷酸丙糖脱下的氢,被还原为乳酸。
而有氧条件下的糖的氧化分解,称为糖的有氧氧化,丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。
糖的有氧氧化和糖酵解在开始阶段的许多步骤是完全一样的,只是分解为丙酮酸以后,由于供氧条件不同才有所分歧。
糖酵解总共包括10个连续步骤,均由对应的酶催化。
总反应为:葡萄糖+2ATP+2ADP+2Pi+2NAD+ -->2丙酮酸+4ATP+2NADH+2H+
丙酮酸(CH3COCOOH)+NADH+H+ -可逆->乳酸(CH3CHOHCOOH)+NAD+
折叠 编辑本段 具体过程
糖酵解可分为二个阶段,活化阶段和放能阶段。
折叠 准备阶段
(1)葡萄糖磷酸化(Phosphorylation)
"葡萄糖氧化"是放能反应,但"葡萄糖"是较稳定的化合物,要使之放能就必须给予"活化能"来推动此反应,即必须先使"葡萄糖"从"稳定状态"变为"活跃状态",活化1个葡萄糖需要消耗1个ATP--由ATP放出1个高能磷酸键,约放出30.5KJ自由能,大部分变为热量而散失,小部分使磷酸与葡萄糖结合生成"葡萄糖-6-磷酸"。催化酶为"己糖激酶",此反应必须有Mg2+的存在。
(2)"葡萄糖-6-磷酸"重排生成"果糖-6-磷酸"。催化酶为"葡萄糖磷酸异构酶"。
(3)"果糖-6-磷酸"经酶催化生成"果糖-1,6-二磷酸"。催化酶为"磷酸果糖激酶-1"。
同(1)步骤一样,此步反应再消耗1分子ATP。此步同样是"ATP的γ-磷酸基团"经酶的作用转移到底物上生成目标产物。
(4)"果糖-1,6-二磷酸"断裂成"3-磷酸甘油醛"(glyceraldehyde 3-phosphate)和"磷酸二羟丙酮",催化酶为"醛缩酶"。
(5)"磷酸二羟丙酮"很快被酶催化为"3-磷酸甘油醛"。催化酶为"丙糖磷酸异构酶"。
以上为第一阶段,1个6C的葡萄糖转化为2个3C化合物PGAL(phosphoglyceraldehyde),消耗2个ATP用于葡萄糖的活化。
另一种不是由葡萄糖为初始底物进入EMP的方式--以"葡萄糖-1-磷酸"形式进入EMP,则仅消耗1个ATP。
无论是以上哪种进入方式,在这一阶段都没有发生氧化还原反应。
折叠 放能阶段
(6)"3-磷酸甘油醛"氧化生成"1,3-二磷酸甘油酸"(1,3-bisphosphoglycerate),释放出2个e-和1个H+,传递给电子受体NAD+,生成NADH,并且将能量转移到高能磷酸键中。催化酶为"3-磷酸甘油醛脱氢酶"。
(7)不稳定的"1,3-二磷酸甘油酸"失去高能磷酸键,生成"3-磷酸甘油酸"(3-phosphoglycerate),能量转移到ATP中,1个"1,3-二磷酸甘油酸"生成1个"ATP"。催化酶为"磷酸甘油酸激酶"。
【此步骤中发生第一次底物水平磷酸化】
(8)"3-磷酸甘油酸"重排生成"2-磷酸甘油酸"(2-phosphoglycerate)。催化酶为"磷酸甘油酸变位酶"。
(9)"2-磷酸甘油酸"脱水生成"磷酸烯醇式丙酮酸"--PEP(phosphoenolpyruvate)。催化酶为"烯醇化酶"。
(10)PEP将磷酸基团转移给ADP生成ATP,同时形成丙酮酸。催化酶为"丙酮酸激酶"。
【此步骤中发生第二次底物水平磷酸化】
以上为糖酵解第二个阶段。1分子的PGAL在酶的作用下生成1分子的丙酮酸。在此过程中,发生一次氧化反应生成一个分子的NADH,发生两次底物水平的磷酸化,生成2分子的ATP。这样,一个葡萄糖分子在糖酵解的第二阶段共生成4个ATP、2个NADH和2个 H+,产物为2个丙酮酸。
在糖酵解的第一阶段,1个葡萄糖分子活化中要消耗2个ATP。因此在糖酵解过程中1个葡萄糖生成2分子的丙酮酸的同时,净得2分子ATP和2分子NADH和H+,NADH和H+通过不同的穿梭途径进入到线粒体参与呼吸链,产生不同数量的ATP(α-磷酸甘油穿梭将H交给FAD,后产生1.5个ATP;苹果酸-天冬氨酸穿梭将H+交给NADH+H+,后者产生2.5个ATP)。
折叠 编辑本段 糖酵解步骤
糖酵解的第一步是葡萄糖磷酸化为6-磷酸葡萄糖。不同细胞类型中所含有的酶也不一样,在所有的细胞中,皆由己糖激酶(Hexokinase)进行催化。哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为Ⅰ至Ⅳ型。6-磷酸葡萄糖可反馈抑制己糖激酶,己糖激酶对葡萄糖的亲和力很高。肝细胞中存在的是Ⅳ型,称为葡萄糖激酶(glucokinase)。它的特点是:①对葡萄糖的亲和力很低;②受激素调控。肝葡萄糖激酶不受其6-磷酸葡萄糖抑制。
磷酸化过程消耗一分子ATP,后面的过程证明,这是回报很丰厚的投资。细胞膜对葡萄糖通透,但对磷酸化产物6-磷酸葡萄糖不通透,后者在细胞内积聚并继续反应,将反应平衡向有利于葡萄糖吸收的那一面推移。之后6-磷酸葡萄糖会在磷酸己糖异构酶的催化下生成6-磷酸果糖。(在此果糖也可通过磷酸化进入糖酵解途径)
接着6-磷酸果糖会在磷酸果糖激酶的作用下被一分子ATP磷酸化生成1,6-二磷酸果糖,ATP则变为ADP。这里的能量消耗是值得的:首先此步反应使得糖酵解不可逆地继续进行下去,另外,两个磷酸基团可以进一步在醛缩酶的参与下分解为磷酸二羟丙酮和3-磷酸甘油醛。磷酸二羟丙酮会在磷酸丙糖异构酶帮助下转化为3-磷酸甘油醛。两分子3-磷酸甘油醛会被NAD+和 3-磷酸甘油醛脱氢酶(GAPDH)氧化生成1,3-二磷酸甘油酸(1,3-BPG)。
下一步反应,1,3-二磷酸甘油酸转变为3-磷酸甘油酸。此反应由磷酸甘油酸激酶催化,2个1,3-二磷酸甘油酸各将1个高能磷酸键转移到ADP上,生成两分子ATP。在此,糖酵解能量盈亏平衡。两分子ATP消耗了又重新生成。ATP的合成需要ADP作原料。如果细胞内ATP多(ADP则会少),反应会在此步暂停,直到有足够的ADP。这种反馈调节和重要,因为ATP就是不被使用,也会很快分解。反馈调节避免生产过量的ATP,节省了能量。磷酸甘油酸变位酶(phosphoglycerate mutase)推动3-磷酸甘油酸生成2-磷酸甘油酸,2-磷酸甘油酸在烯醇化酶(enolase)的催化下生成磷酸烯醇式丙酮酸 (phosphoenolpyruvate, PEP)和水。磷酸烯醇式丙酮酸含有高能磷酸键,是一种高能化合物。最后,在丙酮酸激酶的作用下磷酸烯醇式丙酮酸转变成丙酮酸, 并通过底物水平磷酸化生成ATP,此步反应也受ADP调节。
折叠 糖酵解中的不可逆反应
折叠 编辑本段 NAD+的再生
足够的NAD+是进行3-磷酸甘油醛成为1,3-二磷酸甘油酸这一步反应重要的前提。在此过程中NAD+会被还原为NADH+H。NADH是氢载体,会将氢带到呼吸链。
NAD+的再生可通过呼吸链中的酶复合体1和3-磷酸甘油脱氢酶氧化NADH+H实现。
折叠 编辑本段 能量转化
折叠 平衡点
值得一提的是,生成1,6-二磷酸果糖后的大部分反应都是向能量升高的方向进行的,没有酶(磷酸果糖激酶(PFK),磷酸甘油酸激酶 (PGK))的催化 ,是不会自发进行的。而糖酵解的逆过程--糖异生(从甘油等非糖物质生成葡萄糖)则容易进行,此过程用到大部分在糖酵解里面出现过的酶,除了提到的两位"车夫"外,它们只出现在糖酵解中。在糖异生这两步逆反应会放出大量的热,分别为-14 及 -24 kJ/mol。
折叠 无氧环境和有氧环境
在糖酵解中,每分子葡萄糖提供两分子ATP。真核生物的线粒体能同时从两分子丙酮酸中另外获得36分子ATP。能量转化的多少取决于在细胞质中产生的NADH + H通过线粒体膜的方式。
不论在无氧还是有氧环境中,糖酵解成丙酮酸这一过程都能进行。3-磷酸甘油醛在3-磷酸甘油醛脱氢酶(GAPDH)的作用下脱氢。脱下的氢离子会将氧化剂NAD+还原成NADH + H。NAD+会在呼吸链中再生。若在无氧环境,放热的(ΔH = - 25 kJ/mol)乳糖脱氢酶(LDH)反应会再生NAD+,丙酮酸被还原成乳酸或酒精和二氧化碳。乳酸发酵(lactic acid fermentation)或乙醇发酵(ethanol fermentation)时,1mol葡萄糖可经底物水平磷酸化生成4molATP,在葡萄糖和果糖-6-磷酸磷酸化时消耗2molATP,故净生成2molATP。
无氧环境下糖酵解GAPDH和 LDH反应的相互联系,除了少部分NADH+H会被磷酸甘油脱氢酶(GDH)转化外,大部分会用于再生NAD+。
糖无氧氧化(anaerobic oxidation)的主要生理意义是机体不利用氧快速供能,是机体在缺氧情况下获取能量的有效方式,对肌收缩尤为重要。同时也是某些细胞在氧供应正常情况下的重要供能途径。
在人体内主要发生在:
① 无线粒体的细胞,如:红细胞。
② 代谢活跃的细胞,如:白细胞、骨髓细胞。
糖的有氧氧化(aerobic oxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。
折叠 编辑本段 关键酶
糖酵解的关键酶:有3个,即己糖激酶、6-磷酸果糖激酶-1和丙酮酸激酶,它们催化的反应基本上都是不可逆的。调节方式有别构调节和共价修饰调节。
1. 6-磷酸果糖激酶-1
6-磷酸果糖激酶-1对调节糖酵解途径的流量最重要,通变构调节糖酵解的进行。
别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P
别构抑制剂:柠檬酸;ATP(高浓度)
ATP对6-磷酸果糖激酶-1的调节:ATP与6-磷酸果糖激酶-1活性中心底物结合部位的ATP浓度低时,ATP对6-磷酸果糖激酶-1起变构激活的作用。当活性中心外别构调节部位ATP高浓度时ATP起抑制作用。
2,6-双磷酸果糖对6-磷酸果糖激酶-1的调节:2,6-双磷酸果糖是6-磷酸果糖激酶-1最强的变构激活剂;其作用是与AMP一起取消ATP、柠檬酸对6-磷酸果糖激酶-1的变构抑制作用。
2.丙酮酸激酶
丙酮酸激酶是糖酵解的第二个重要的调节点,受到别构调节和共价修饰调节。
别构激活剂:1,6-二磷酸果糖
别构抑制剂:ATP, 丙氨酸
3.己糖激酶
己糖激酶受到反馈抑制调节,其中长链脂肪酰CoA和6-磷酸葡萄糖会抑制己糖激酶的活性,胰岛素则会激活己糖激酶的活性。