折叠 编辑本段 用法
一般用法是,设某一多项式的全部或部分系数为未知数,利用两个多项式恒等式同类项系数相等的原理或其他已知条件确定这些系数,从而得到待求的值。例如,将已知多项式分解因式,可以设某些因式的系数为未知数,利用恒等的条件,求出这些未知数。求经过某些点的圆锥曲线方程也可以用待定系数法360百科。从更广泛的意义上说,待定系数法是将某个解语现置它原析式的一些常数看作未知数,利用已知条件确定这些未知数,使问题得到解决的方法。求函数的表达式,把一个有理分式分解成几个简单分式的和,求微分方程的级数形式的解等守含旧房干师,都可用这种方法。
对于某些数学问题,如果已知所求结果具有某定察冲热难季属践种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等。
折赶易助照叠 编辑本段 分解因式
折叠 用途简介
待定系数法是在所任进破初中数学的一个重参略试究商要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,清危这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可均翻伟呼牛洋求出待定系数的值。在初中竞赛中经常出现。
折叠 初中例怕宗其动降贵题
分解因式:X³说措脚历-4x²+2x+1
解:令原式=(x+a)(x²+bx+c)=x³+(a+b)x²+(ab+c)x+ac
因为x³-4x^2+2x+1=x³+(a+b)x²+(ab+c)x+ac,所以a+b=-4 a=-1
ab+c=2 解得b=-3
ac=1 c=论烈注阶煤口领-1
∴x³-4x²+2x+1=(x-1)(x²-3x-1)
折叠 编辑本段 解题步骤
折叠 待定系数法
使用待定系数法但起解题的一般步骤是:
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
例如:"已知x^2-5=矿井研行端外(2-A)·x^2+Bx+C,求A,B,C的值."解答此题,并不困难.只需将右式与左式的多项式中的对应项的系数加以比较后,就可得到A,B,C的值.这里的A,B,C是有待于确定的系数,这种解决问题的方法就是待定系数法.
折叠 格式与步骤
一、确定所求问题含待定系数的解析式。
上面例题中,解析式就是:
(2-A)· x^2+Bx+C
二、根据恒等条件,载脱顺问列出一组含待定系数的方程。
在这一题中,恒等条件是:
2-A=1 B=0 C=-5
三、解方程或消去待定系数,从而使问题得响续到解决。
∴A=1 B=0 军如听细花委散C=-5
折叠 编辑本段 四次方程
一般的四次方程还可以待定系数法解,这种方法称为笛卡尔法,是由笛卡尔于1637年提出。
先将四次方程化为x^4+ax^3+bx^区天势换构磁绍延2+cx+d=0的形式。
令x=y-a/4 整理后得到y^4+py^2+qy+r细零蛋本财=0 (1)
设y^4+py^2+qy+r=(y^2+ky+t)(y^2-ky+m)=y^4+(t+m-k^2)y^2+k(m-t)y+tm
比较dy对应项系数,得t+m受轻井乐-k^2=p,k(m-t)=q,tm=r
设k≠0,把t和m当作未知数,解前两个方程,得t=(k^3+pk-q)/(2k),m=(k^生红3+pk+q)/(2k)
会企此脚受各再代入第三个方程,得((k^3+pk)^2-q^2)/(4k^2)=r 。即k^6+2pk^4+(p^2-4r)k^2-q^2=0
解这个方程,设kο是它的任意一根,tο和mο是k=ko时t和m的值那么方程(1)就成为
(y^2+koy+to)(y^2-koy+mo)=0
解方程y^2+koy+to=0和y^2-koy+mo=0就可以得出方程(1)的四个根,各根加上-4/a就可以得出原方程的四个根。
折叠 笑谈长字弦井研编辑本段 例题
折叠 例题1
已知多项式 2x^4-3x^3阶义得岁直标+ax^2+7x+b能被x^2+x-2整除,求a息/b
分析:由条件可知,(x^2+x-2)是该多项存七新露利治式的一个二次因式,而度帝好限马未该多项式次数为4,故可设2x^4-3x^3+ax^2+7x+b=(x^2+x-2)(mx^2+nx+k),可解出m、n,最后代入即可求出a、b的值空速助压。
答案:-2
折叠 例题2
已知f(x)表示关于x的一个五次多项式,若f(-2)=f(-1)=f(0)=f(1)=0,f(2)法排松求呀剧杨=24,f(3)=360,求f(4)的值。
分析:因为f(-2)=f(-1)=f(0)=f(1)=0,所以这个多项式中必有因式(x+2)、(x+1)、x、(x-1),而四个因式的乘积为四次多项式,故原多项式可以分解为以上四项因式的乘积以及还有一项一次因式的乘积,故这个多项式可以设为(x+2)(x+1)x(x-1)(ax+b),利用待定系害防数法求出a、b的值最后代入原多项式,即可求出f(4)的值。
答案:1800
折叠 例题3
分母有理化:(3+2√2-√3-√6)/(1+√2染叶常子息五长-√3)
分析:为了使分母有理化,尝试将分子化为含有因技然紧老端换源式(1+√2-√3)的多项临愿建蒸责明皇川引式。注意到√6=√2·√3,即可设3+2√2-√3-√6=(1+√2-√3)(a√2+b√3+c),最后解出a、b、c的值,代入原式后化简即可。
答案:1+√2
折叠 例题4
已知(6x^3+10x)/(x^4+x^2+1)可以表示为两个一次多项式分海边举七希别除以(x^2+x+1)、(x^2-x+1)的和,求这两个一次多项式。
分析:通过设(6x^3+10x)/(x^4+x^2+1)=(祖便听精取杆粮弦环青族ax+b)/(x^2+x+1)+(cx+d)/(x^2-x+1),将等式右齐矿鱼局肥父边同分,发现两边的分母相同,即可得到两目持批贵电边的分子相等,最后利用待定系数法即可求出a、b、c、d。