2022-06-22 20:04:53

雅可比矩阵 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
词条暂无分类
编辑分类

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式

基本信息

  • 中文名称

    雅可比矩阵

  • 雅可比矩阵

    是一阶偏导数以一定排列成的矩阵

目录

折叠 编辑本段 定义

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。

它们全部都以数学家雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən]。

雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

雅可比矩阵定义为向量对向量的微分矩阵,定义式雅可比行列式雅可比行列式

见所附jpg图片。

折叠 编辑本段 MATLAB

MATLAB中jacobian是用来计算Jacobi矩阵的函数。

syms r l f

x=r*cos(l)*cos(f);

y=r*cos(l)*sin(f);

z=r*sin(l);

J=jacobian([x;y;z],[r l f])

结果:

J =

[ cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)]

[ cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*cos(f)]

[ sin(l), r*cos(l), 0 ]

折叠 编辑本段 面积元

二维下dx(u,v)dy(u,v)=Jdudv成立

证明:对于曲面x=x(u,v),y=y(u,v),取它的微元,即小曲边四边形ABCD,其中

A(u,v),B(u+△u,v),C(u+△u,v+△v),D(u,v+△v),这个曲边四边形ABCD可以近似看成由微小向量B(u+△u,v)-A(u,v)和D(u,v+△v)-A(u,v)张成。利用中值定理可知:

(u+△u,v)-(u,v)=Mdu

(u,v+△v)-(u,v)=Ndv

式中M,N为偏导数形式,可以通过简单计算得出。

当变化量很小时,

将(u+△u,v)-(u,v)近似看为dx(u,v)

(u,v+△v)-(u,v)近似看为dy(u,v),

故dx(u,v)dy(u,v)=M*Ndudv

式中M*N为二维Jacobi行列式的展开形式。

由此得证。

阅读全文

热点资讯

我的关注