2021-01-14 11:37:13

x光

免费编辑 添加义项名

所属类别 :
其他
其他
编辑分类

X光是1895年由德国物理学教授威廉·孔拉德·伦琴发现的一种波长极短,能量很大的电磁波

基本信息

  • 中文名称

    X射线

  • 外文名称

    X-Ray

  • 适用领域

    医疗 科研

折叠 编辑本段 概述

  

1895年,德国菲试堡物理研究所所长兼物理学教授威廉·孔拉德·伦琴把新发现的电磁波命名为X光,这个"X" 是无法了解的意思。世人为了表示对发明者的敬意,亦称之为"伦琴线"。X光是一种有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。就在伦琴宣布发现X射线的第四天,一位美国医生就用X射线照相发现了伤员脚上的子弹。

1894年,实验物理学家勒纳德在放电管的玻璃壁上开了一个薄铝窗,成功地使阴极射线射出管外。

1895年,物理学家伦琴在探索阴极射线本性的研究中,意外发现了X光。X光的发现,不仅揭开了物理学革命的序幕,也给医疗保健事业带来了新的希望。伦琴因此成为第一个诺贝尔物理学奖得主。X射线的发现是人类揭开研究微观世界序幕的"三大发现"之一。

x光是穿透性很强的射线,一种高能量光波粒子,所以一般物体都挡不住,射线要被阻挡,关键由射线强度、频率、阻挡物质与射线作用程度、阻挡物质厚度、阻挡物质大小共同决定。一般情况下,常见的X光(医院用)大约3~5cm的铅块就可以阻挡了。但是也会在背景屏上会显示阻挡物的阴影形状,就好像日食,虽挡住了太阳光,却留下了阴影。

伦琴在一次在暗房里洗照片时,把一个光导管放在了旁边。结果,在没有太阳光照射下,照片竟被过度曝光了。这是只有在洗照片时经阳光直射才可能发生的。难道在可见光之外还有别的光存在?伦琴对这一现象作了仔细研究。经过反复试验,他发现是光导管中无意产生的一种不可见光。他又经过了多次试验,又发现了这种光束能穿透金属以外的物体的特性,把它广泛运用于各个方面,并为后来发现红,紫外线等不可见光奠定了基础。

折叠 编辑本段 危害

X光检查作为一种常见的医学诊断手段在国内临床上得到广泛的应用,尽管大部分患者知道辐射对健康有一定危害,但都认为其危害微乎其微,为了治病也习惯于暴露在X光射线之下。

根据国际辐射防护委员会的最新的研究结果估算,以一座1000万左右人口的城市为例,每年大约会有350人左右可能因照射X光诱发癌症、白血病或其他遗传性疾病。在X光、CT检查比较普遍的日本,每年新增癌症病例中3.2%是由这两种检查造成的。

有专家指出,X射线检查对人体有损伤,射线照得越多,致癌的危险性越大,因此国家卫生部早在2002年颁发的《放射工作卫生防护管理办法》中就明确规定,医务人员应对受检者进行必要的防护。但是令人感到震惊的是,目前大部分的医院都在违规操作,"病人无任何防护进行X射线检查"似乎已成惯例,而鲜有人意识到其中的危害,事实上大多数的患者恐怕都不知道卫生部有这个规定存在。

折叠 编辑本段 伦琴与X射线

到1896年元月,发现X射线的新闻业已在全世界引起了巨大的骚动。我们能够想象出当时人们对这些射线的无限惊讶:几乎任何东西对它们来说都是透明的,用这些射线人们可以看见自己的骨胳。没有肉但是带有指环的手指,十分清楚,象嵌入体内的子弹一样。人们立即就领悟到它对医学的影响。一月二十三日,伦琴为物理医学学会作了关于他的发现的唯一的一次公开讲演。人们以暴风雨般的掌声向他致意。

以那时的知识来说,伦琴关于X射线的工作是完全够格的了,但他没有理解X射线的性质。

1895年伦琴的著名论文的最后,他写道:

这些新射线不会是以太的纵振动吧?我必须承认在我的研究过程中我越来越相信了,因此对我来说应该宣布我的猜测,虽然我很消楚这种解释需要进一步的确证。

这个"进一步的确证"始终没有得到,而且,花了整整十六年,依靠了马克斯·冯·劳厄(MaxvonLaue)和弗里德里希(Friedrich)以及克尼平(Knipping)的工作才解决了关于X射线性质的争论。

在发现了X射线后的数月中,伦琴收到了来自世界各地的讲学邀请,但是除了一个例外他谢绝了所有的邀请,因为他要继续研究他的X射线。他给请他去演示新射线的同行们写了短信,表达他的歉意,说明他没有时间作任何报告或表演。唯一的例外是对皇帝,1896年1月13日他给皇帝演示了他的X射线。

要给皇帝表演这件事一直使伦琴感到紧张,"我希望我使用这个管子时将托皇帝之福,遇上好运气,"他说,"因为这些管子是非常易碎的,经常被损坏……抽空一根管子需要四天。"但是没有出什么事。象伦琴收到的这样一种去宫廷的邀请,除了讲演和演示之外,还要与皇帝一同进餐,接受一枚勋章(二级王冠勋章),离去时,为了表示对陛下的尊敬,还得退着走出来。关于这一点,理查德·威尔斯泰特(Richard Willstatter),对叶绿素复杂机制作出解释的大有机化学家说,他和氨的合成者弗里茨·哈贝尔(Fritz Haber),在取得了他们的发现后,也曾期待着皇帝的邀请。所以他们练习倒退着走路。威尔斯泰特是一位精制瓷器的收集者,在他们练习倒走的房间里有一只昂贵的瓷瓶,不出所料,他们的练习以这只瓷瓶被打碎而告终。虽然他们没有受到皇帝邀请,但他们所做的练习并不是徒劳无益的。后来两人都获得了诺贝尔奖金。按照礼节,在他们从瑞典国王手中接过奖品之后必须倒退着走路。

伦琴发现了X射线之后,物理学家和医学界人士赶紧研究这种新的射线。在1896起已有1000篇以上关于这个课题的论文。在1896至1897年间,伦琴自己只写了两篇关于X射线的文章。然后,他回到原先研究的课题上去,在以后的二十四年里写过七篇只引起短暂兴趣的文章,而把对X射线的研究让给了其他的年轻的新生力量。对他这样的做法的理由,人们只能推测而已。

折叠 编辑本段 X射线与医疗

1895年,德国物理学家威廉·康拉德·伦琴发现了X射线,为人类利用X射线诊断与治疗疾病开拓了新途径,开创了医疗影像技术的先河。

为了使医生可以更清晰对人体内脏器官的病灶和症状进行观察、更好地对症下药,迅速、彻底地解除病人的痛楚,世界各国科学家孜孜不倦的对医疗影像技术进行着研究和改进。20世纪70年代中期,电子计算机的应用为医疗影像带来了第一次革命性的创新,结合了电子计算机技术的第一台医疗影像设备--CT扫描仪诞生了!

基于X射线的CT扫描仪基于X射线的CT扫描仪

  基于X射线的CT扫描仪

利用电子计算机X射线断层成像(CT),可以更好的分辨人体内部结构图像,大幅提高了疾病诊断的准确性,成为为20世纪医学诊断领域所取得的最重大的突破之一。此后,医疗影像技术迅猛发展,核磁共振成像(MRI)、计算机放射成像(CR)、数字放射成像(DR)、发射式计算机断层成像(ECT)等各种数字化医疗影像新技术不断涌现,组成了功能强大的放射成像信息系统(RIS),成为医疗诊断必不可少的重要基石。

电子计算机技术的发展、普及及其它在医学中的应用日益广泛,最终形成了一门多学科交叉的新兴学科--医药信息学(medicalinformatics),而医药信息学在医学应用中的最大领域就是医院信息系统(HospitalInformationSystem,HIS)。HIS使用计算机和通讯设备采集、存储、处理、传输和输出门诊、住院患者医护和管理信息,包括临床辅助科室的信息,形成网络系统,实现信息共享,提高医院工作质量和效益。

在世界发达国家的大医院里,早在20世纪80年代初期就建成了完善的HIS,实现了现代化医疗管理。随着HIS的快速发展,传统的医疗影像资料和数据的存储和处理方式已经不再满足需要,于是在欧洲、美国等发达国家在80年代中期开始研究更先进的医学影像存档及通讯系统(PACS),并于90年代初期与RIS组成PACS/RIS陆续应用到HIS之中。

以数字化医疗影像技术为基础,建立PACS/RIS,完善HIS,构成了当今世界数字化医疗的新格局。在这股汹涌而来的数字化医疗浪潮中,而柯达公司正是这股浪潮中提供高新科技的先躯,其实,柯达公司在1976年就开发出了数字相机技术,并将数字影像技术应用于航天领域,在数字影像领域积累了雄厚的技术实力。

历史 早期X射线重要的研究者有Ivan Pului教授、威廉·克鲁克斯爵士、约翰·威廉·希托夫、Eugene Goldstein、海因里希·鲁道夫·赫兹菲利普·莱纳德亥姆霍兹尼古拉·特斯拉、爱迪生、Charles Glover Barkla、马克思·冯·劳厄和威廉·康拉德·伦琴。 物理学家希托夫观察到真空管中的阴极发出的射线。当这些射线遇到玻璃管壁会产生荧光。1876年这种射线被Eugene Goldstein命名为"阴极射线"。随后,英国物理学家克鲁克斯研究稀有气体里的能量释放,并且制造了克鲁克斯管。这是一种玻璃真空管,内有可以产生高电压的电极。他还发现,当将未曝光的相片底片靠近这种管时,一些部分被感光了,但是他没有继续研究这一现象。1887年4月,尼古拉·特斯拉开始使用自己设计的高电压真空管与克鲁克斯管研究X光。他发明了单电极X光管,在其中电子穿过物质,发生了现在叫做韧致辐射的效应,生成高能X光射线。1892年特斯拉完成了这些实验,但是他并没有使用X光这个名字,而只是笼统成为放射能。他继续进行实验,并提醒科学界注意阴极射线对生物体的危害性,并他没有公开自己的实验成果。1892年赫兹进行实验,提出阴极射线可以穿透非常薄的金属箔。赫兹的学生伦纳德进一步研究这一效应,对很多金属进行了实验。亥姆霍兹则对光的电磁本性进行了数学推导。 1895年11月8日德国科学家伦琴开始进行阴极射线的研究。1895年12月28日他完成了初步的实验报告"一种新的射线"。他把这项成果发布在 维尔茨堡's Physical-Medical Society 杂志上。为了表明这是一种新的射线,伦琴采用表示未知数的X来命名。很多科学家主张命名为伦琴射线,伦琴自己坚决反对,但是这一名称仍然有人使用。1901年伦琴获得诺贝尔物理学奖。 1895年爱迪生研究了材料在X光照射下发出荧光的能力,发现钨酸钙最为明显。1896年3月爱迪生发明了荧光观察管,后来被用于医用X光的检验。然而1903年爱迪生终止了自己对X光的研究。因为他公司的一名玻璃工人喜欢将X光管放在手上检验,得上了癌症,尽管进行了截肢手术仍然没能挽回生命。1906年物理学家贝克勒耳发现X射线能够被气体散射,并且每一种元素有其特征X谱线。他因此获得了1917年诺贝尔物理学奖。 在20世纪80年代,X射线激光器被设置为罗纳德·里根总统的战略主动防御计划的一部分。然而对该装置(一种类似激光炮,或者死亡射线的装置,由热核反应提供能量)最初的、同时也是仅有的试验并没有给出结论性的结果。同时,由于政治和技术的原因,整体的计划(包括X射线激光器)被搁置了(然而该计划后来又被重新启动--使用了不同的技术,并作为布什总统国家导弹防御计划的一部分)。 在20世纪90年代,哈佛大学建立了Chandra X射线天文台,用来观测宇宙中强烈的天文现象中产生的X射线。与从可见光观测到的相对稳定的宇宙不同,从X射线观测到的宇宙是不稳定的。它向人们展示了恒星如何被黑洞绞碎,星系间的碰撞,超新星和中子星(that build up layers of plasma that then explode into space)。

折叠 编辑本段 特点

X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。 X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。 X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。

折叠 编辑本段 分类

放出的X射线分为两类: (1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。 (2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。

折叠 编辑本段 应用

医用诊断X线机

医学上常用作辅助检查方法之一。临床上常用的x线检查方法有透视和摄片两种。透视较经济、方便,并可随意变动受检部位作多方面的观察,但不能留下客观的记录,也不易分辨细节。摄片能使受检部位结构清晰地显示于x线片上,并可作为客观记录长期保存,以便在需要时随时加以研究或在复查时作比较。必要时还可作x线特殊检查,如断层摄影、记波摄影以及造影检查等。选择何种x线检查方法,必须根据受检查的具体情况,从解决疾病(尤其是骨科疾病)的要求和临床需要而定。x线检查仅是临床辅助诊断方法之一。 工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。 X射线具有很强的穿透力,医学上常用作透视检查,工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。

折叠 编辑本段 发现

1895年11月8日是一个星期五。晚上,德国慕尼黑伍尔茨堡大学的整个校园都沉浸在一片静悄悄的气氛当中,大家都回家度周末去了。但是还有一个房间依然亮着灯光。灯光下,一位年过半百的学者凝视着一叠灰黑色的照相底片在发呆,仿佛陷入了深深的沉思…… 他在思索什么呢?原来,这位学者以前做过一次放电实验,为了确保实验的精确性,他事先用锡纸和硬纸板把各种实验器材都包裹得严严实实,并且用一个没有安装铝窗的阴极管让阴极射线透出。可是现在,他却惊奇地发现,对着阴极射线发射的一块涂有氰亚铂酸钡的屏幕(这个屏幕用于另外一个实验)发出了光.而放电管旁边这叠原本严密封闭的底片,现在也变成了灰黑色-这说明它们已经曝光了! 这个一般人很快就会忽略的现象,却引起了这位学者的注意,使他产生了浓厚的兴趣。他想:底片的变化,恰恰说明放电管放出了一种穿透力极强的新射线,它甚至能够穿透装底片的袋子!一定要好好研究一下。不过-既然目前还不知道它是什么射线,于是取名"X射线"。 于是,这位学者开始了对这种神秘的X射线的研究。 他先把一个涂有磷光物质的屏幕放在放电管附近,结果发现屏幕马上发出了亮光。接着,他尝试着拿一些平时不透光的较轻物质-比如书本、橡皮板和木板-放到放电管和屏幕之间去挡那束看不见的神秘射线,可是谁也不能把它挡住,在屏幕上几乎看不到任何阴影,它甚至能够轻而易举地穿透15毫米厚的铝板!直到他把一块厚厚的金属板放在放电管与屏幕之间,屏幕上才出现了金属板的阴影-看来这种射线还是没有能力穿透太厚的物质。实验还发现,只有铅板和铂板才能使屏不发光,当阴极管被接通时,放在旁边的照相底片也将被感光,即使用厚厚的黑纸将底片包起来也无济于事。 接下来更为神奇的现象发生了, 一天晚上伦琴很晚也没回家,他的妻子来实验室看他,于是他的妻子便成了在那不明辐射作用下在照相底片上留下痕迹的第一人。

折叠 编辑本段 柏克勒尔的贡献

如果从纯粹科学的观点来看,继X射线这一重大发现之后,1896年,汤姆生等人又有一个更重要的发现:当这些射线通过气体时,它们就使气体变成异电体,在这个研究范围内,液体电解质的离子说已经指明液体中的导电现象有着类似的机制。在X射线通过气体以后,再加以切断,气体的导电性仍然可以维持一会儿,然后就慢慢地消失了。汤姆生发现,当由于X射线的射入而变成导体的气体,通过玻璃绵或两个电性相反的带电板之间时,其导电性就消失了。这就说明,气体之所以能够导电,是由于含有荷电的质点,这些荷电的质点一旦与玻璃绵或带电板之一相接触,就放出电荷。 从这些实验可以明白,虽然离子是液体电解质中平常而永久的构造的一部分,但是,在气体中,只有X射线或其他电离剂施加作用时才会产生离子。如果顺其自然,离子就会渐渐重新结合乃至最终消失。玻璃面的表面很大,可能吸收离子或帮助离子重新结合。如果外加的电动势相当高,便可以使离子一产生出来就马上跑到电极上去,因而电动势再增高,电流也不能再加大。 伦琴的发现还开创了另一研究领域,即放射现象的领域。既然X射线能对磷光质发生显著的效应,人们很自然地就会提出这样的问题,这种磷光质或其他天然物体,是否也可以产生类似于X射线那样的射线呢?在这一研究中首先获得成功的是法国物理学家亨利·柏克勒尔。 柏克勒尔出身于科学世家,他的整个家族一直都在默默地研究着荧光、磷光等发光现象。他的父亲对荧光的研究在当时堪称世界一流水平,提出了铀化合物发生荧光的详细机制。柏克勒尔自幼就对物理学相当痴迷,他不止一次地在内心深处宣读誓言,一定要超出祖父、父亲所作出的贡献,为此,他作出了不知超过常人多少倍的努力。 那一天,当他冒着刺骨的冷风,参观完伦琴X射线的照片后,他既为伦琴的发现所激动,又为自己的无所建树而汗颜。他浮想联翩,猜想X射线肯定与他长期研究的荧光现象有着密切的关系。在19世纪末物理大发现的辉煌乐章中,柏克勒尔注定要演奏主旋律部分了。为了进一步证实X射线与荧光的关系,他从父亲那里找来荧光物质铀盐,立即投入到紧张而又有条不紊的实验中。他十分迫切地想知道铀盐的荧光辐射中是否含X射线,他把这种铀盐放在用黑纸密封的照相底片上。他在心里想,黑色密封纸可以避阳光,不会使底片感光,如果太阳光激发出的荧光中含有X射线,就会穿透黑纸使照相底片感光。真不知道密封底片能否感光成功。 1896年2月,柏克勒尔把铀盐和密封的底片,一起放在晚冬的太阳光下,一连曝晒了好几个小时。晚上,当他从暗室里大喊大叫着冲出来的时候,他激动得快要发疯了,他所梦寐以求的现象终于出现:铀盐使底片感了光!他又一连重复了好几次这样的实验,后来,他又用金属片放在密封的感光底片和铀盐之间,发现X射线是可以穿透它们使底片感光的。如果不能穿透金属片就不是X射线。这样作了几次以后,他发现底片感光了,X射线穿透了他放置的铝片和铜片。这似乎更加证明,铀盐这种荧光物质在照射阳光之后,除了发出荧光,也发出了X射线。 1896年2月24日,柏克勒尔把上述成果在科学院的会议上作了报告。但是,大约只过了五六天,事情就出人意料地发生了变化。柏克勒尔正想重做以上的实验时,连续几天的阴雨天,太阳躲在厚厚的云层里,怎么喊也喊不出来,他只好把包好的铀盐连同感光底片一起锁在了抽屉里。 1896年3月1日,他试着冲洗和铀盐一起放过的底片,发现底片照常感光了。铀盐不经过太阳光的照射,也能使底片感光。善于留心实验细节的柏克勒尔一下子抓住了问题的症结。从此,他对自己在2月24日的报告,产生了怀疑,他决心一切推倒重来。 这次,他又增加了另外几种荧光物质。实验结果再度表明,铀盐使照相底片感光,与是否被阳光照射没有直接的关系。柏克勒尔推测,感光必是铀盐自发地发出某种神秘射线造成的。 此后,柏克勒尔便把研究重心转移到研究含铀物质上面来了,他发现所有含铀的物质都能够发射出一种神秘的射线,他把这种射线叫做"铀射线"。 3月2日,他在科学院的例会上报告了这一发现。他是含着喜悦的泪水向与会者报告这一切的。 后来经研究他又发现,铀盐所发出的射线,不光能够使照相底片感光,还能够使气体发生电离,放电激发温度变化。铀以不同的化合物存在,对铀发出的射线都没有影响,只要化学元素铀存在,就有放射性存在。柏克勒尔的发现,被称作"柏克勒尔现象",后来吸引了许多物理学家来研究这一现象。 因研究这一现象而获得重大发现的是波兰出生,后来移居法国的女物理学家居里夫人。她挺身而出,冲向研究铀矿石的最前沿。没有多久,皮埃尔·居里也加入了妻子的行列。他们不知吃了多少苦头,才相继提炼出钋、镭等放射性元素,引起了全人类的高度重视。 居里夫人也因为这一卓越的研究工作,荣获了1903年诺贝尔物理学奖,1911年诺贝尔化学奖也授予了她,她成了一生中两次获诺贝尔奖的少数科学家之一。 X射线的发现,把人类引进了一个完全陌生的微观国度。X射线的发现,直接地揭开了原子的秘密,为人类深入到原子内部的科学研究,打破了坚冰,开通了航道。 黑洞的发现 当年人类就是通过测宇宙中的X射线,而肯定了黑洞的存在。

折叠 编辑本段 X射线的产生

X射线波长略大于0.5纳米的被称作软X射线。波长短于0.1纳米的叫做硬X射线。硬X射线与波长长的(低能量)伽马射线范围重叠,二者的区别在于辐射源,而不是波长:X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变。 产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能会以光子形式放出,形成X光光谱的连续部分,称之为制动辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1纳米左右的光子。由于外层电子跃迁放出的能量是量子化的,所以放出的光子的波长也集中在某些部分,形成了X光谱中的特征线,此称为特性辐射。 此外,高强度的X射线亦可由同步加速器或自由电子雷射产生。同步辐射光源,具有高强度、连续波长、光束准直、极小的光束截面积并具有时间脉波性与偏振性,因而成为科学研究最佳之X光光源。

阅读全文

热点资讯