2021-02-17 13:48:57

微分 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
函数
函数
编辑分类

在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。

基本信息

  • 中文名

    微分

  • 概述

    一种线性描述

  • 一元型

    定义 推导

  • 切线微分

    当自变量为固定值

  • 运算法则

    基本法则 连锁律 乘法律

  • 导数1

    正弦函数的导数

折叠 编辑本段 基本简介

数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。微分微分

折叠 编辑本段 一元型

折叠 定义

函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) - f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,(注:o读作奥密克戎,希腊字母),那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商

当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。

微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去微分近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。

折叠 编辑本段 切线微分

折叠 当自变量为固定值

需要求出曲线上一点的斜率时,前人往往采用作图法,将该点的切线画出,以切线的斜率作为该点的斜率。然而,画出来的切线是有误差的,也就是说,以作图法得到的斜率并不是完全准确的斜率。微分最早就是为了从数学上解决这一问题而产生的。

折叠 举例

以y=x²为例,我们需要求出该曲线在(3,9)上的斜率,过这两点直线的斜率就越接近所求的斜率m,当△x与△y的值变得无限接近于0时,直线的斜率就是点的斜率。

当x=3+△x时,y=9+△y,也就是说,

(3+△x)^2=9+△y

9+6△x+(△x)^2=9+△y (展开)

6△x+(△x)^2=△y (两边减去9)

△y/△x=6+△x (两边除以△x)

∵lim△x→0 m=△y/△x {m为曲线在(3,9)上的斜率,△y/△x 为直线斜率 }

∴lim△x→0 m=6+△x=6

我们得出,y=x^2在点(3,9)处的斜率为6。

阅读全文

热点资讯

我的关注