2022-04-24 11:55:23

反比例函数 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
函数
函数
编辑分类

反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。 因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=k·x^(-1)。

基本信息

  • 中文名

    反比例函数

  • 外文名

    inverse proportional function

  • 公式

    y=k/x

  • 定义域

    {x|x≠0}

  • 值域

    (-∞,0)∪(0,+∞)

  • k大于0时

    1、3象限

  • k小于0时

    2、4象限

  • 应用范围

    几何、数学,计算机等

折叠 编辑本段 定义

一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,称为因变量。x的取值范围是不等于0的一切实数,且y也不能等于0。k>0时,图像在一、三象限。k<0时,图像在二、四象限.k的绝对值表示的是x与y的坐标形成的矩形的面积。

折叠 编辑本段 表达式

反比例函数反比例函数x是自变量,y是因变量,y是x的函数

(即:y=kx^-1)

(k为常数且k≠0,x≠0)

若此时比例系数为:

自变量的取值范围

① 在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实 数;②函数 y 的取值范围也是任意非零实数。

解析式

其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,

即 |x|x≠0,x属于R这个范围。R是实数范围。也就是x是实数}。下面是一些常见的形式:

k为常数(k≠0),x不等于0

折叠 编辑本段 函数图像

反比例函数[1]的图像属于以原点对称中心中心对称双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交.反比例函数反比例函数

图象画法

1)列表

x

...

-3

-2

-1

1

2

3

4

...

y

...

-4

-6

-12

12

6

4

3

...

2)在平面直角坐标系中标出点。

3)用平滑的曲线连接点。

当两个数相等时那么曲线呈弯月型

折叠 编辑本段 意义及应用

过反比例函数图像上任意一点P(x,y),作两坐标轴的垂线,两垂足原点、P点组成一个矩形,矩形的面积为k的绝对值。

过反比例函数一点,作垂线,并连接原点,三角形的面积为k绝对值的一半。

研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。这个常数是k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

折叠 编辑本段 函数性质

折叠 单调性

当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;

当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。

k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。

折叠 相交性

因为在

(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图像不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。

折叠 面积

在一个反比例函数图像上任取两点,过原点分别作x轴,y 轴的平行线,与坐标轴围成的矩形面积为|k| ,

反比例函数上一点 向x 、y 轴分别作垂线,分别交于y轴和x轴,则QOWM的面积为k|,则连接该矩形的对角线即连接OM,则RT△OMQ的面积=½|k|

折叠 图像表达

反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴 y=±x(即第一三,二四象限角平分线),对称中心坐标原点

反比例函数图像不与x轴和y轴相交的渐近线为:x轴与y轴。

k值相等的反比例函数图像重合,k值不相等的反比例函数图像永不相交。

|k|越大,反比例函数的图像离坐标轴的距离越远。

折叠 对称性

反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=x和y=-x;反比例函数图像上的点关于坐标原点对称。反比例函数反比例函数图像关于原点对称。若设正比例函数y=mx与反比例函数 交于A、B两点(m、n同号),那么A B两点关于原点对称

反比例函数关于正比例函数y=±x轴对称,并且关于原点中心对称。

与正比例函数交点

设在平面内有反比例函数 和一次函数y=mx+n,要使它们有公共交点,则反比例减去一次函数为零 。

折叠 编辑本段 应用举例

折叠 例1

反比例函数图像上有一点P(m, n)其坐标是关于t的一元二次方程 t²+3t+k=0的两根直线,且P到原点的距离为根号13,求该反比例函数的解析式.

分析:

要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程

解:∵ m, n是关于t的方程 的两根双曲线

∴ m+n=-3,mn=k,

又 m²+n²=13, m+n=-3;

∴ (m+n)²-2mn=13, m+n=-3;

∴ 9-2k=13

∴ k=-2

∴该反比例函数的解析式为y=-2/x.

折叠 例2

直线与位于第二象限的双曲线 相交于A、A1两点,过其中一点A向x、y轴作垂线,垂足分别为B、C,矩形ABOC的面积为6,求:

(1)求双曲线的解析式

分析:矩形ABOC的边AB和AC分别是A点到x轴和y轴的垂线段

设A点坐标为(m,n),则AB=|n|, AC=|m|,

根据矩形的面积公式知|m·n|=6.

由已知条件知,该双曲线位于第二、四象限,因此,A点坐标值异号,

即双曲线的解析式为xy=-6.

折叠 例3

已知一次函数y=-x+6和反比例函数 y=x/k(k≠0)

(1)k满足什么条件时,这两个函数在同一坐标系中的图像有两个交点?

(2)当图像有两个交点时(设为A和B),判断∠AOB是锐角、钝角还是直角?说明理由。

解(1)一次函数y=-x+6和反比例函数y=x/k(k不等于零)有两个交点,即

化简的反比例函数反比例函数 有两个交点 则方程有两个不同的解

即所以k<9且k不等于0

(2)当0<k<9时 两交点在第一象限所以∠AOB是锐角 当k<0时 两交点分别在第二和第四象限所以∠AOB是钝角

折叠 例4

已知函数.

(1)当m为何值时,y是x的正比例函数?

(2)当m为何值时,y是x 的反比例函数?

解(1)正比例函数则x次数是1

(m-2)(m+1)=0

m=2,m=-1

系数不等于0

m-1≠0

所以m=2,m=-1

(2)反比例函数则x次数是-1

m(m-1)=0

m=0,m=1

系数不等于0

m-1≠0

所以舍去m=1

因此m=0

折叠 例5

一矩形的面积为24,则该矩形的长x cm与宽y cm之间的关系是什么?请写出函数表达式,若要求矩形的各边长均为整数,请画出所有可能的的矩形。

解 面积xy=24

函数表达式(x>0)

矩形的各边长均为整数

可以取x=1,2,3,4,6,8,12,24或2,4,8,16,32,64等

折叠 编辑本段 知识与概念

折叠 概念理解

形如

(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线

由于反比例函数属于奇函数,有,图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图象。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

折叠 重点知识

  1. 过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
  2. 对于双曲线,若在分母上加减任意一个实数(,m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移,左加右减)
参考资料

阅读全文

热点资讯

我的关注