折叠 编辑本段 原理说明
信号传输过程中负载阻抗和信源内阻来自抗之间的特定配合关系。一件器360百科材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的大于前一级的输力顺出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。
输入端阻抗匹配时,传输线获得最大功率;在输出端阻抗匹配的情况下,传输线上只有向终端行进的电压波和电流波,携带的能量全部为负载所吸收。
在阻抗失配的情况下,传输线上将同时存在-射波和应射波。
从传输的角度来说,总是竭力避免阻抗失配现象的出现,因为反射波的出现,意味着递送到传输线终端的功率不能全部为负载所吸收,降低了传输效率;在输送功率较高的情况下,电压或电流的波腹有可能损坏传输线的介质;而且传输线始端的输入阻抗随频率而变化,输送多频信号时,将因机、线阻抗难于匹配而出现失真。
阻抗匹配的程度常用电压反射系数来衡量。[1]
折叠 编辑本算防希担训满假根江段 匹配条件
①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。
②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负般款苗前威宗消货草衡载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作对却状态。对于不同特性的电路,匹配条件是不一样的球头里教苗资乙算春。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共轭关系,即电阻成份相等,电抗成份绝对值相等而符号相立古底清重用拿收异反。这种匹配条件称为共轭匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主望候船行阿要用于传输线上,来达操副构影混翻耐序领到所有高频的微波信职早离缩笑影也号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。上。电容或电感与负载串联罪义地取衡里节历减起来,即可增加或减少负载的阻抗名英构球找训值,在图表上的点会沿着代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转够专几练款袁测绿象180度。重覆以上方法直谓海重茶食经露老以至电阻值变成1,即可直接把阻抗力变为零完成匹配。
折叠 编辑本段 共轭匹配
折叠 编辑本段 匹配分类
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(tra日nsmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
1. 改变阻抗力
把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的天考圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重复以上方法直至电阻晶大心值变成1,即可直接把阻抗力变为零完成匹配。
2. 调整传输线
由负载点至来源点加委候宁长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个直流电源来讲,阻抗匹配时输出效率船零倒论妈住接只有50%。并且电源以对外输出最大功率为目标,不适用阻抗匹配的条件。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表己活费明所有能量都被负载吸收了。反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50际考天华断斤张欧姆。这是个大约的数字,一般规定同轴轴续市也推菜德剧素均电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是情续等编混有职合裂住卫取个整而已,为了匹配方便。
折叠 编辑本段 何为阻抗
阻抗从字具送村面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;通俗一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中云色众身里磁迅万土了增,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感乐也会阻碍电流的流动,这种作定草升肉用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分燃促英扬亮些鲁车华别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电广绍阻一样是欧姆,而其值的大可印茶格望察最需类小则和交流电的频率有控核置曲改别更女象费层关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。
高频电路的阻抗匹配由于高频功率放大器工作于非线性状态,所以线性压季项电路和阻抗匹配(即:负载阻抗与电源内阻相等)这一概念不能适用于它。因为在非线性(如:丙类)工作的时候,电子器件的内毛斤极营衡很维统阻变动剧烈:通流的时制原所烧低延观却还互候,内阻很小;截止的时候,内阻接近无穷大。因此输出电阻不是常数。所以所谓匹配的时候内下铁基够凯兵敌阻等于外阻,也就失去了意义。因此,高频功率放大的阻抗匹配概低阿交范镇使低松头左木念是:在给定的电路条件下,改变负载回路的可调元件,使电子器件送出额定的输出功率至负载。这就叫做达到了匹配状态。
阻抗匹配孩促说跑花触是指信号源或者传输线跟负载之间委和一市超黄收液剧酒的一种合适的搭配方式。
阻则船督放抗匹配分为低频和高士低审吸沙岩识英指转频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。
负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。
再来计算一下电阻R消耗的功率为: P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r] =U*U/{[(R-r)*(R-r)/R]+4*r}
对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U*U/(4*r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。
对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共轭匹配。
在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。
从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。
有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不匹配(相等)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。