折叠 编辑本段 芳360百科香性
吡啶吡啶的结构与苯但马油法办妒非常相似,近代物理方法测得,吡啶分子中的碳碳键长为139pm,介于C-N单键 (147pm)和C=N双键(128承场笑四伟亚pm)之间,而且其碳碳键与碳氮键的键长数值也相近,键角约为120°,这说明吡啶环上键的平均化程度较高,但没有苯完全。
吡啶环上的碳原子和氮原子均以sp2杂化轨道相互重名叠形成σ键,构成一个平面六元听环。每个原子上有一个p轨道垂直于环平面,每肥迅述个p轨道中有一个电子,这些p轨道侧面重叠形成一个封闭的大π键,π电子数目为6,符合4n+2规则,与苯环类似。因此,吡啶具有一定的宁精系芳香性。氮原子上还有一个sp2杂化轨道没有参与成键,被一对孤对电子所占据,使吡啶具有碱性。吡啶环上的氮原子的电负性较大,对环上电子思着协历及右组料愿云密度分布有很大影响,使π电子云向氮原子上偏移,在氮原子周围电子云密度高,而环的其他部分电子云密度降低,尤其是邻、对位上降低显著。所以吡啶的芳香性比苯差。
停卫在吡啶分子中,氮原子的作察区最眼要情球整良究用类似于硝基苯的硝基,使其邻、对位上的电子云密职影富促子阳最所木度比苯环降低,间位则与苯环相近,这样,环上碳原子的电子云密度远远少于苯,因此象吡啶这类芳杂环又被称为"缺π"杂环。这类杂环表现在化学性质上是亲电取代反应变难,对否汉无亲核取代反应变易,氧化反无气适么照积术做应变难,还原反应变易。
折叠 编辑本段 物理性质
折叠 外观与性状
无色或微黄色液体,有恶臭。
熔点(℃): -41印垂汽煤掌为宜市.6
沸点(℃): 115.3
相胜盾厂协对密度(水=1): 0.9827
折射率:1.5067(25℃)
相对蒸气密度(空气=1): 2.73
饱和蒸推草交担科单已气压(kPa): 1.33/13.2℃
闪点(℃): 17
引燃温度(℃): 482
爆炸上限%(V/V): 12.4
爆特伤引初眼伤体流求许炸下限%(V/V): 1.7
燃烧热(定压)(K细号消随绝示销J/mol):2826.51
(定容)(KJ/mol):2782.97
比热容(21℃,定压)(KJ/kg.K):1.64
临界温度(℃):346.85
临界压力(MPa):6.18
电导率(25℃)(μS/cm):4
热导率(20℃)(W/强唱m.K):0.182
黏度(15℃)(mPa.S):1.038
(20℃)(mPa.S):0.952
(30℃)(mPa.S):0.829
蒸发热(25℃)(KJ/mol):40.4277
熔化热(KJ/mol):7.4133
生成热(液体所)(KJ/mol):99.9808
偶极距:2.22D 吡啶为极武编评名叶生春季束量性分子,其分子极性比其饱和的化合物--哌啶大。这是因为在哌啶环中,氮原的兵以兵今环烈喜分子 只有吸电子的诱导效应(-I),而在吡啶环中,氮原子既有吸电子的诱导效应,又有吸电子的共轭效应(-C)。
溶解性: 溶于水和醇、醚等多数有机溶剂。吡啶与水能以任何比例互溶,同时又能溶解大多数极性及非极性的有机化合物,甚至可以溶解某些无机盐类,所以吡啶是一个有广泛应用价值的溶剂。吡减老害茶皮伟冷虽星染艺啶分子具有高水溶性的原因除了分子具有较大的极性外,还因为吡啶氮原子上的未共用电子对可以与水形成弦充帝内团得镇氢键。吡啶结构中的烃基使它与拿随有机分子有相当的亲和力,所以优息可以溶解极性或非极性的有机化合物。而氮原子上的未共用电子对能与一些金属离子如Ag、Ni、Cu等形成配合物,而致使它老存欢可以溶解无机盐类。 与水形成共沸混合物,沸点领照妈92~93℃。(工业上利用这个性质来纯化吡啶。)
折叠 光谱性质
(1)吡啶的红外光谱(IR):芳杂环化合物的红期干粉次其京广外光谱与苯系化合物类卷似,在3070~3020cm处有C仅过-H伸缩振动,在1600~1500cm有芳环的进检策茶企区混烧束息伸缩振动(骨架谱带),在900~700cm处还有芳氢的面外弯曲振动。
(2)吡啶的核磁共振氢谱(HNMR):吡啶的氢核化学位移与苯环氢(δ7.27)相比处于低场,化学位移大于7.27,其中与杂原子相邻碳上的氢的吸收峰更偏于低场。当杂环上连有供电子基团时,化学位移向高场移动,取代基为吸电性时,则化学位移向低场移动。
(3)吡啶的点著万七某著创和紫外吸收光谱(UV):吡啶有两如营超奏德含功难示放针条紫外光谱吸收带,一条在240~260nm(ε=2000),相应于π→π*跃迁(与苯相近)。另一条在270n厚m的区域,相应于n→π不*跃迁(ε=450)。
折叠 露编辑本段 化学性质
吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型么便亲在照的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶坚土注注期类液内,能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反检规被晚血行时矿烟价应,易被氧化成N-氧化吡啶。
折叠 碱性和成盐
吡啶氮原子上的未共用电子对可接受质子而显碱性。吡啶的共轭酸(N原子上接受一个质子后的吡啶)的pKa为5.25,比氨(pKa9.24)和脂肪胺(故信族难斗来政则善渐pKa 10~11)都弱。原因是吡啶中氮原子上的未共用电子对处于sp2杂粮据化轨道中,其s轨苦亮料括代练道成分较sp3杂化轨道多,离原子核近,电子受核的束缚较斤位二德帮村史强,给出电子的倾向较小,因而与质子结合较难,碱性较弱。但吡啶与芳胺(如苯胺,pKa 4.6)相比,碱性稍强一些兴海就。
吡啶与强酸可以形成稳呼矿定的盐,某些结晶型盐可以用于分离、鉴定及精制工作中。吡啶的碱性在许多化学反应中用于催植道化剂脱酸剂,由于吡啶在水中和有机溶剂中的良好溶解性,所以它的催化作用常常是一些无机碱无法达到的。
吡啶不但可与强酸成盐,还可以与路易斯酸成盐。
此外,吡啶还具有叔胺的某些性质,可与卤代烃反应生成季铵盐,也可与酰卤反应成盐。
折叠 亲电取代反应
吡啶是"缺π"杂环,环上电子云密度比苯低,因此其亲电取代反应的活性也比苯低,与硝基苯相当。由于环上氮原子的钝化作用,使亲电取代反应的条件比较苛刻,且产率较低,取代基主要进入3(β)位。
与苯相比,吡啶环亲电取代反应变难,而且取代基主要进入3(β)位,可以通过中间体的相对稳定性来说明这一作用。
由于吸电性氮原子的存在,中间体正离子都不如苯取代的相应中间体稳定,所以,吡啶的亲电取代反应比苯难。比较亲电试剂进攻的位置可以看出,当进攻2(α)位和4(γ)位时,形成的中间体有一个共振极限式是正电荷在电负性较大的氮原子上,这种极限式极不稳定,而3(β)位取代的中间体没有这个极不稳定的极限式存在,其中间体要比进攻2位和4位的中间体稳定。所以,3位的取代产物容易生成。
折叠 亲核取代反应
由于吡啶环上氮原子的吸电子作用,环上碳原子的电子云密度降低,尤其在2位和4位上的电子云密度更低,因而环上的亲核取代反应容易发生,取代反应主要发生在2位和4位上。
吡啶与氨基钠反应生成2-氨基吡啶的反应称为齐齐巴宾(Chichibabin)反应,如果2位已经被占据,则反应发生4位,得到4-氨基吡啶,但产率低。如果在吡啶环的α位或γ位存在着较好的离去基团(如卤素、硝基)时,则很容易发生亲核取代反应。如吡啶可以与氨(或胺)、烷氧化物、水等较弱的亲核试剂发生亲核取代反应。
折叠 氧化还原反应
由于吡啶环上的电子云密度低,一般不易被氧化,尤其在酸性条件下,吡啶成盐后氮原子上带有正电荷,吸电子的诱导效应加强,使环上电子云密度更低,更增加了对氧化剂的稳定性。当吡啶环带有侧链时,则发生侧链的氧化反应。
吡啶在特殊氧化条件下可发生类似叔胺的氧化反应,生成N-氧化物。例如吡啶与过氧酸或过氧化氢作用时,可得到吡啶N-氧化物。
吡啶N-氧化物可以还原脱去氧。在吡啶N-氧化物中,氧原子上的未共用电子对可与芳香大π键发生供电子的p-π共轭作用,使环上电子云密度升高,其中α位和γ位增加显著,使吡啶环亲电取代反应容易发生。又由于生成吡啶N-氧化物后,氮原子上带有正电荷,吸电子的诱导效应增加,使α位的电子云密度有所降低,因此,亲电取代反应主要发生在4(γ)上。同时,吡啶N-氧化物也容易发生亲核取代反应。
与氧化反应相反,吡啶环比苯环容易发生加氢还原反应,用催化加氢和化学试剂都可以还原。
吡啶的还原产物为六氢吡啶(哌啶),具有仲胺的性质,碱性比吡啶强(pKa=11.2),沸点106℃。很多天然产物具有此环系,是常用的有机碱。
折叠 编辑本段 影响
折叠 编辑本段 应用途径
折叠 编辑本段 制备
折叠 编辑本段 衍生物品
折叠 编辑本段 健康危害
折叠 侵入途径
吸入、食入、经皮吸收。
折叠 健康危害
折叠 慢性影响
长期吸入出现头晕、头痛、失眠、步态不稳及消化道功能紊乱。可发生肝肾损害。可引起皮炎。
折叠 燃爆危险
本品易燃,具强刺激性。
折叠 危险特性
折叠 编辑本段 毒理学资料
折叠 毒性
属低毒类。
折叠 中毒症状
主要有恶心、疲劳、食欲缺乏,一些急性中毒事件中表现为精神崩溃。吡啶中毒引起死亡的事件比较少。
折叠 急性毒性
LD501580mg/kg(大鼠经口);1121mg/kg(兔经皮);人吸入25mg/m³×20分钟,对眼结膜和上呼吸道粘膜有刺激作用。
折叠 毒性
大鼠吸入32.3mg/m³×7小时/日×5日/周×6月,肝重量系数增加;人吸入20~40mg/m³(长期);神衰、步态不稳、手指震颤、血压偏低、多汗,个别肝肾有影响。