折叠 编辑本段 定义
earthquake magnitude
震级:是指地震规模大小,通常用字母M表示。地震愈大,震级数字也愈大,目前世界上已知有记载的最大的震级为9.5级.
它是根据地震波记录测定的一个没有量纲的数值,用来在一定范围内表示各个地震的相对大小(强度[1])。震级与地震烈度的概念根本不同。震级代表地震本身的强弱,只同震源发出的地震波能量有关;烈度则表示同一次地震在地震波及的各个地点所造成的影响的程度,与震源深度、震中距、方位角、地质构造以及土壤性质等许多因素有关。
用地震释放的能量来表示地震的大小,即地震的震级。震级大的地震,释放的能量多;震级小的地震,释放的能量少。中国一般采用里氏震级。通常小于2.5级的地震称为小地震,2.5-4.7之间的地震称为有感地震。震级每相差1.0级,能量相差大约30倍。
折叠 编辑本段 发展历史
里氏地震规模最早是在1935年由两位来自美国加州理工学院的地震学家里克特(Charles Francis Richter)和古登堡(Beno Gutenberg)共同制定的。
此标度原先仅是为了研究美国加州地区发生的地震而设计的,并用伍德·安德森扭力式地震仪(Wood-Anderson torsion seismometer)测量。里克特设计此标度的目的是区分当时加州地区发生的大量小规模地震和少量大规模地震,而灵感则来自天文学中表示天体亮度的星等。
为了使结果不为负数,里克特定义在距离震中100千米处之观测点地震仪记录到的最大水平位移为1微米(这也是伍德-安德森扭力式地震仪的最大精度)的地震作为0级地震。按照这个定义,如果距震中100千米处的伍德-安德森扭力式地震仪测得的地震波振幅为1毫米(10^3微米)的话,则震级为里氏3级。里氏地震规模并没有规定上限或下限。现代精密的地震仪经常记录到规模为负数的地震。
由于当初设计里氏地震规模时所使用的伍德·安德森扭力式地震仪的限制,近震规模 ML 若大于约6.8或观测点距离震中超过约600千米便不适用。后来研究人员提议了一些改进,其中面波震级(MS)和体波震级(Mb)最为常用。
最初的原始震级标度只适用于近震和地方震。1945年B.古登堡把震级的应用推广到远震和深源地震,奠定了震级体系的基础,利用宽频带地震仪记录远震传来的面波,根据面波的振幅和周期来计算震级。
几种常见的震级标度
折叠 编辑本段 震级强弱
折叠 编辑本段 测定方法
中国的面波震级计算公式为:
地震震级 M ,用地震面波质点运动最大值 (A/T)max 测定。计算公式为:
M=lg(A/T)max+ σ ( Δ )
式中: A 地震面波最大地动位移,取两水平分向地动位移的矢量和,μ m ;
T 相应周期, S ;
Δ震中距, ( 度 ) 。
测量最大地动位移的两水平分量时,要取同一时刻或周期相差在1/8周之内的震动。若两分量周期不一致时,则取加权和:
T=(T N ×A N +T E× A E )/(A N +A E )
式中: A N 南北分量地动位移,μ m;
A E 东西分量地动位移,μ m;
T N A N 的相应周期, S ;
T E A E 的相应周期, S ;
量规函数σ ( Δ ) 为:
σ ( Δ )=1.66lg Δ +3.5
不能使用与表一中给出的值相差很大的周期来测定地震震级 M 。地震震级 M 应根据多台的平均值确定。
式中A为两水平分向地动位移的矢量合成振幅,以微米为单位;T为相应的周期,以秒为单位;σ(Δ°)为面波震级起算函数,只与震中距Δ°(测点与震中间的大圆弧度数)有关;Cs为台站校正值。
面波震级标度Ms比较适用于从远处(震中距大于1000千米)测定浅源大地震的震级,而且各国地震机构的面波震级测定结果也比较一致,因此世界各国在公布1931年新疆8级地震和交换有关震级的信息资料时 ,一般都使用面波震级。即通常所说的里氏震级。另外,为解决巨大地震的面波震级饱和问题,有人提出用震源物理中的地震矩概念推导出一种新的震级标度--矩震级MW。智利大地震的面波震级 Ms=8.5,但矩震级MW=9.5,成为人类已知的最大地震。矩震级已在地震观测中开始试用,但其方法还在进一步研究和完善。它可作为面波震级的有益补充,但不能完全取代面波震级。
折叠 编辑本段 分类
折叠 编辑本段 常见震级标度
地震发生后,人们首先关心的问题是:这是多大的地震?如果回到几百年前,我们肯定得不到像"×级地震"的类似答案,而是一系列关于地震破坏的宏观描述,犹如明史中记载的陕西华县地震:"……地裂泉涌,中有鱼物,或城郭房陷入地中……官吏、军民压死八十三万有奇"。也就是说,那个时候,我们只能根据地震的破坏程度--烈度来估计地震的大小。烈度不仅受人的主观影响,还与震区的地质、建筑条件等因素有关,因此,烈度并不能定量地度量地震大小。
1935年,查尔斯·里克特在研究美国南加州地震时,发明了一种定量测量地震大小的方法。他规定在震中距为100km的地方,如果"标准地震仪"(伍德-安德森地震仪,周期是0.8s,放大倍数为2080)记录到的地震波最大振幅是1微米(注:仪器上记录到1微米对应的实际地动位移是1/2080=0.00048微米),震级为0;如果振幅是x微米,震级为其对数。当然,当振幅是0.1微米时,震级为lg0.1=-1,相当于小锤子敲打地面产生的震级。实际上,绝大多数地震仪不会恰好都摆在100km震中距的地方,此时就要根据震中距对应的量规函数来校正数值。里克特提出的这种震级标度被后人称为里氏震级ML,也叫地方性震级,主要适用于6级以下的中小地震,这里的L表示local(地方性)的意思。
里氏震级的出现,第一次把地震大小变成了可测量、可相互比较的量,为地震学的定量化发展奠定了基础。时至今日,伍德-安德森地震仪早已绝迹,成为博物馆的陈列品。但人们为了保持地震记录的对比和延续性,很多小地震仍会通过仪器的模拟仿真,计算出里氏震级。
伍德-安德森地震仪是一种短周期地震仪(周期为0.8s),它可以较好地记录短周期地震波。但地震波在传播过程中,由于高频地震波(即短周期波)的衰减速度要远远大于低频地震波,当地震仪距离震中较远时,这种地震仪的记录能力变得有限。1945年,地震学家古登堡发明了面波震级Ms,Ms可以远距离记录地震,这就弥补了里氏震级的不足。其中,s表示surface wave(面波),它是根据周期约为20s的面波大小确定的地震震级。
面波震级也存在问题,当地震的震源深度较深的时候,激发的面波不显著。所以,古登堡还发明了体波震级mb,b表示body wave(体波),它是根据地震波的体波(通常是P波)的大小确定的地震震级。几乎所有的地震,无论距离远近、震源深度,还包括核爆炸,都可以在地震图上较清楚地识别P波,因此mb具有广泛的应用,美国地质调查局(USGS)对外公布的很多震级就是mb。
遗憾的是,无论是里氏震级、面波震级、还是体波震级,都存在着两个主要问题。一是这些震级与地震发生的物理过程没有直接联系,物理含义不清楚。二是通过统计分析,发现它们具有"饱和"现象。也就是说,当地震所释放的能量增大的时候,震级却不再增大(见图),因此面对大地震时,采用这些震级标度会低估地震的能量。
【矩震级(Mw)与里氏震级(ML)、面波震级(Ms)及体波震级(mb)的关系】
1979年,日本的金森博雄提出了矩震级Mw的概念。矩震级的计算公式中用到了地震矩M0,地震矩具有严格的物理意义,其中M0=uAD(u是剪切模量,A是破裂面的面积,D是地震破裂的平均位错量)。从公式看,地震破裂面面积越大,位错量越大,释放的能量也就越多。正因为如此,矩震级不会像其他震级一样存在饱和问题。比如1960年智利大地震,测定的矩震级Mw=9.5,而面波震级已经饱和,仅为8.5。
矩震级已成为世界上大多数地震台网和地震观测机构优先推荐使用的震级标度。不过,由于世界各国有各自的震级研究历史和计算公式,各国对外公布的震级标度还未统一。中国对外公布的震级大多是面波震级而不是矩震级。比如这次日本大地震,中国公布的是面波震级8.6级,美国公布的是矩震级9.0级。
折叠 编辑本段 震级
面波震级标度Ms比较适用于从远处(震中距大于1000km)测定浅源大地震的震级,而且各国地震机构的面波震级测定结果也比较一致,因此通常所说的里氏震级就是面波震级,矩震级可作为面波震级的有益补充,但不能完全取代面波震级。最常用的面波震级达8.6以后有饱和问题,特大地震一般用矩震级表示更为合理。[2][1]
下表列出的是不同里氏震级(ML)的年均发生次数和震中地区的影响:
程度 | 里氏规模 | 地震影响 | 发生频率(全球) |
极微 | 2.0以下 | 很小,没感觉 | 约每天 8,000次 |
甚微 | 2.0-2.9 | 人一般没感觉,设备可以记录 | 约每天 1,000次 |
微小 | 3.0-3.9 | 经常有感觉,但是很少会造成损失 | 估计每年49,000次 |
弱 | 4.0-4.9 | 室内东西摇晃出声,不太可能有大量损失。当地震强度超过4.5级时,已足够让全球的地震仪监测得到。 | 估计每年6,200次 |
中 | 5.0-5.9 | 可在小区域内对设计/建造不佳或偷工减料的建筑物造成大量破坏,但对设计/建造优良的建筑物则只会有少量的损害。 | 每年800次 |
强 | 6.0-6.9 | 可摧毁方圆100英里以内的居住区。 | 每年120次 |
甚强 | 7.0-7.9 | 可对更大的区域造成严重破坏。 | 每年18次 |
极强 | 8.0-8.9 | 可摧毁方圆数百英里的区域。 | 每年1次 |
超强 | 9.0及其以上 | 摧毁方圆数千英里的区域 | 每20年1次 |
折叠 编辑本段 震级与能量
假定第1级地震所释放的能量为1,第2级应为31.62,第3级应为1000,依此类推,第7级为10亿,第8级为316.2亿,第9级则为10000亿。由于里氏地震规模是常用对数,因此在估算能量的时候,里氏震级每增加一,释放的能量大约增加32倍。
下表列出的是不同级别的地震释放的能量相当于的TNT当量:
里氏震级 | 大致相应TNT当量 | 实例 |
0.5 | 6kg | 手榴弹爆炸 |
1.0 | 30kg | 建筑爆破 |
1.5 | 180kg | 二战期间常规炸弹 |
2.0 | 1吨 | 二战期间常规炸弹 |
2.5 | 6吨 | 二战期间的"Cookie" 巨型炸弹 |
3.0 | 30吨 | 2003年大型燃料空气炸弹(MOAB) |
3.5 | 180吨 | 1986年前苏联切尔诺贝利核事故 |
4.0 | 1千吨 | 小型原子弹 |
4.5 | 0.6万吨 | 常见的龙卷风 |
5.0 | 3.3万吨 | 美国在二战结束前在日本广岛、长崎投放的原子弹(投放后日本无条件投降) |
5.5 | 20万吨 | 1992年美国内华达州Little Skull Mtn.地震 |
6.0 | 100万吨 | 1994年美国内华达州Double Spring Flat地震 |
6.5 | 600万吨 | 1994年Northridge地震 |
7.0 | 3400万吨 | 目前最大型的原子弹 (注:前苏联曾试爆5000万吨级别的氢弹)、2017年8月8日晚四川九寨沟县地震 |
7.5 | 1.9亿吨 | 1992年美国加利福尼亚Landers地震 |
8.0 | 11亿吨 | 1976年中国唐山大地震(7.8级)、2008年中国汶川大地震(8.0级-2008年5月18日修订) |
8.5 | 62亿吨 | 1964年美国阿拉斯加安克雷奇耶稣受难日地震 |
9.0 | 350亿吨 | 1960年智利大地震(9.5级,为人类观测史上最强震级)、2004年印度洋大地震(9.0级) 2011年日本大地震(9.0级)。以上三次强震均引发了巨大海啸,造成重大人员伤亡和财产损失 |
10.0 | 1兆吨(1万亿吨) | 约相当于一个直径约为100千米的石质陨石以秒速25千米撞击地球时所产生的地震。 |
折叠 编辑本段 缺点及改进
里氏地震规模的主要缺陷在于它与震源的物理特性没有直接的联系,并且由于"地震强度频谱的比例定律"(The Scaling Law of Earthquake Spectra)的限制,在8.3-8.5左右会产生饱和效应,使得一些强度明显不同的地震在用传统方法计算后得出里氏地震规模(如(MS)数值却一样。到了21世纪初,地震学者普遍认为这些传统的地震规模表示方法已经过时,转而采用一种物理含义更为丰富,更能直接反应地震过程物理实质的表示方法即矩震级 (Moment magnitude scale,MW)。地震矩规模是由同属加州理工学院的金森博雄(Hiroo Kanamori)教授于1977年提出的。该标度能更好的描述地震的物理特性,如地层错动的大小和地震的能量等。
折叠 编辑本段 修订震级
理论上,一次地震,同一震级标度的震级只有一个。实际上,除了经常出现不同的国家、机构所报道的震级不一致现象外(比如2001年中国昆仑山口西地震,中国的测定结果是Ms=8.2,而美国的测定结果是Ms=8.0),还经常有修订震级的情况发生。针对这种现象,可以从以下几方面解释。
首先要明确震级的计算过程不像"距离=速度×时间"那样严格,本质上它是经验公式,是通过很多地震实例求解的最佳拟合公式。即使后来的矩震级有了明确的物理意义,但在利用地震波反演求解地震震源参数过程中,也存在多解性和不确定性。换个角度说,就是没必要过于苛求震级的严格统一。
其次,不同的国家、机构所利用的台站资料是有差别的,这都会影响震级测定结果。台站资料的差别主要包括:(1)由于台站的台基、所使用仪器不同,震级相差一二级都是可能的。(2)由于地震产生的地震波辐射具有方向性,处于不同方位、震中距的地震台站测得的震级也会有较大差别。以东日本大地震为例,中国使用的是中国地震台网,它们全都分布在日本的西侧,震中距也有限;而美国利用的是全球地震台网(GSN),它们分布在全球各地,覆盖得更合理、均匀,因此理论上美国的震级测定相对中国更加准确。
最后关于震级的修订。测定震级的普遍方法是对不同方位、不同震中距的大量台站的测定结果,作算术平均。高质量的台站数据越多,测定的结果越准确。但地震发生后,几乎所有人都希望快速了解地震概况,各机构抢在第一时间向政府和公众报告,这样所做的地震速报,要求时间性强,利用的台站数量往往有限。随着研究工作开展,更多台站加入到震级计算的阵营中,台站分布也变得更均匀、合理,研究人员也有更充裕的时间去挑选优秀的地震波,进行更细致的计算,震级的测定因此也随时间的推移而不断修正。一般修正过程会持续半年、甚至一年,直到全球的资料汇集后测定,才算最终结果。好比这次日本气象厅,在几次修订震级后,仍然在9.0级时说明这是"interim value"(临时值)