2015-12-15 13:37:36

太阳能电池 免费编辑 添加义项名

B 添加义项
?
义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。 查看详细规范>>
所属类别 :
生活日用品
生活日用品
编辑分类
太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photovoltaic,photo 光线,voltaics 电力,缩写为PV),简称光伏。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。

基本信息

  • 中文名

    太阳能电池

  • 外文名

    Solar Cell

  • 发明时间

    1883

  • 发明人

    Charles Fritts

  • 原理

    光电效应

  • 材料种类

    非晶硅、多晶硅、CdTe等

  • 类型

    硅基半导体电池、染料敏化电池等

折叠 编辑本段 基本介绍

太阳能电池[1]是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。

折叠 市场需求

当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。

目前,全球太阳能电池市场竞争激烈,欧洲和日本领先的格局已被打破。尽管主要的销售市场在欧洲,但太阳能电池的生产重镇已经转移到亚洲。2012年,全球太阳能电池产量达到37.4GW,同比增长6.3%。

在世界光伏市场的强力拉动下,中国太阳能电池制造业通过引进、消化、吸收和再创新,获得了长足的发展。中国太阳能电池产业的发展大致可分为三个阶段。第一阶段为1984年以后的研究开发时期;之后迎来了2001年以后的产业形成时期,第二阶段也是尚德等太阳能电池厂商开始创业的时期;2005年至今的第三阶段是中国太阳能电池产业的快速发展时期。

得益于国家对太阳能等新能源产业的政策、资金支持,2011年中国太阳能电池产业增长迅速,在世界10大太阳能电池生产商中有6家是中国企业。对太阳能电池产业而言,2012年及2013年是相当辛苦的两年,市场竞争激烈导致价格大幅下跌,欧、美、中多家太阳能电池大企业破产,所幸因价格的下跌,让新装机的数量能够维持成长不坠。2013年,我国太阳能电池行业累计产量同比增长19.95%,蝉联全球最大太阳能电池市场地位。

折叠 未来发展方向

2012年2月24日,工业和信息化部发布了《太阳能光伏产业“十二五”发展规划》,以促进太阳能产业可持续发展。该《规划》的提出对于太阳能光伏企业来说,对市场是个极大地刺激,也将引领光伏企业走上快速发展的轨道。《规划》将晶硅电池、薄膜电池、高效聚光太阳能电池列为“十二五”期间的发展重点。——2014年中国太阳能电池进出口数据分析

首先介绍了太阳能电池的定义、种类、应用领域等,接着分析了国际国内太阳能电池产业的现状,然后具体介绍了单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、多元化合物太阳能电池、薄膜太阳能电池的发展。

本研究报告数据主要来自于国家统计局、海关总署、商务部、财政部、能源局、产业研究中心、市场调查中心、中国可再生能源行业协会以及国内外重点刊物等渠道,数据权威、详实、丰富,同时通过专业的分析预测模型,对行业核心发展指标进行科学地预测。您或贵单位若想对太阳能电池行业有个系统深入的了解、或者想投资太阳能电池行业,本报告将是您不可或缺的重要参考工具。

折叠 编辑本段 发展历史

术语“光生伏特(Photovoltaics)”来源于希腊语,意思是光、伏特和电气的,来源于意大利物理学家亚历山德罗·伏特的名字,在亚历山德罗·伏特以后“伏特”便作为电压的单位使用。

以太阳能发展的历史来说,光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。

1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。1849年术语“光-伏”才出现在英语中。

1883年第一块太阳电池由Charles Fritts制备成功。Charles用锗半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。

到了1930年代,照相机的曝光计广泛地使用光起电力行为原理。

1946年Russell Ohl申请了现代太阳电池的制造专利。

到了1950年代,随着半导体物性的逐渐了解,以及加工技术的进步,1954年当美国的贝尔实验室在用半导体做实验发现在硅中掺入一定量的杂质后对光更加敏感这一现象后,第一个太阳能电池在1954年诞生在贝尔实验室。太阳电池技术的时代终于到来。

1960年代开始,美国发射的人造卫星就已经利用太阳能电池作为能量的来源。

1970年代能源危机时,让世界各国察觉到能源开发的重要性。

1973年发生了石油危机,人们开始把太阳能电池的应用转移到一般的民生用途上。

目前,在美国、日本以色列等国家,已经大量使用太阳能装置,更朝商业化的目标前进。

在这些国家中,美国于1983年在加州建立世界上最大的太阳能电厂,它的发电量可以高达16百万瓦特。南非、博茨瓦纳纳米比亚非洲南部的其他国家也设立专案,鼓励偏远的乡村地区安装低成本的太阳能电池发电系统。

而推行太阳能发电最积极的国家首推日本。1994年日本实施补助奖励办法,推广每户3,000瓦特的“市电并联型太阳光电能系统”。在第一年,政府补助49%的经费,以后的补助再逐年递减。“市电并联型太阳光电能系统”是在日照充足的时候,由太阳能电池提供电能给自家的负载用,若有多余的电力则另行储存。当发电量不足或者不发电的时候,所需要的电力再由电力公司提供。到了1996年,日本有2,600户装置太阳能发电系统,装设总容量已经有8百万瓦特。一年后,已经有9,400户装置,装设的总容量也达到了32百万瓦特。近年来由于环保意识的高涨和政府补助金的制度,预估日本住家用太阳能电池的需求量,也会急速增加。

中国,太阳能发电产业亦得到政府的大力鼓励和资助。2009年3月,财政部宣布拟对太阳能光电建筑等大型太阳能工程进行补贴。

折叠 编辑本段 行业发展

前瞻产业研究院《中国太阳能电池行业市场前瞻与投资战略规划分析报告前瞻》指出,由于世界太阳能组件产能迅速扩大,市场供过于求,导致产品价格下滑,市场竞争加剧,整个太阳能电池企业普遍亏损,在成本控制上不及亚洲地区的美欧企业更是陷入困境。而作为太阳能电池的主流产品的晶体硅太阳能电池高昂的价格高昂,更令太阳能电池企业苦不堪言。

晶体硅太阳能电池由于其转换效率高、工作稳定性、寿命长、技术发展成熟等优异特性,2012年晶体硅电池已占全球光伏市场约90%的份额。而原材料成本过高一直是制约晶体硅太阳能电池行业大规模运用的一个瓶颈。

随着多晶硅产能的扩张和释放,近几年,晶体硅太阳能电池主要原料——多晶硅料的价格有下降的趋势,预期未来多晶硅料价格还将继续下降,原材料价格的下降大大降低了晶体硅太阳能电池的发电成本。随着太阳能光伏发电成本的不断下降,大规模利用太阳能光伏发电将变得更加普遍,从而推动晶体硅太阳能电池产业向广度发展。

折叠 编辑本段 主要分类

折叠 太阳能电池的分类简介

太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。

按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌 (Zn 3 p 2 )等。

太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

折叠 硅太阳能电池

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%(截止2011,为17%)。因此,多晶硅薄膜电池不久将会在太阳能电池市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

折叠 多晶体薄膜电池

多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。

砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs电池的普及。

铜铟硒薄膜电池(简称CIS)适合光电转换,不存在光致衰退问题,转换效率和多晶硅一样。具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。

折叠 有机聚合物电池

以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。

折叠 纳米晶电池

纳米TiO2晶体化学能太阳能电池是新近发展的,优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。

此类电池的研究和开发刚刚起步,不久的将来会逐步走上市场。

折叠 有机薄膜电池

有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的。

折叠 染料敏化电池

染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。

折叠 塑料电池

塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但目前塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。

折叠 编辑本段 生产

折叠 封装

组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。

折叠 流程

1、电池检测——2、正面焊接—检验—3、背面串接—检验—4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——5、层压——6、去毛边(去边、清洗)——7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——8、焊接接线盒——9、高压测试——10、组件测试—外观检验—11、包装入库

折叠 质量保证技巧

1、高转换效率、高质量的电池片;

2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等;

3、合理的封装工艺

4、员工严谨的工作作风;

由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。

折叠 编辑本段 工作原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,光生空穴由n区流向p区,光生电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。

折叠 光—热—电转换

(1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。

折叠 光—电直接转换

(2) 光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的

折叠 编辑本段 组装工艺

在这里只简单的介绍一下工艺的作用,给大家一个感性的认识.

折叠 电池测试

由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。

折叠 正面焊接

是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连

折叠 背面串接

背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。

折叠 层压敷设

背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:钢化玻璃、EVA、电池片、EVA、玻璃纤维、背板)。

折叠 组件层压

将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。

折叠 修边

层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

折叠 装框

类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。

折叠 焊接接线盒

在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。

折叠 高压测试

高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。

折叠 组件测试

测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。目前主要就是模拟太阳光的测试Standard test condition(STC),一般一块电池板所需的测试时间在7-8秒左右。

折叠 阵列设计步骤

1.计算负载24h消耗容量P

P=H/V

V——负载额定电源

2.选定每天日照时数T(H)。

3.计算太阳能阵列工作电流。

IP=P(1+Q)/T

Q——按阴雨期富余系数,Q=0.21~1.00

4.确定蓄电池浮充电压VF。

镉镍(GN)和铅酸(CS)蓄电池的单体浮充电压分别为1.4~1.6V和2.2V。

5.太阳能电池温度补偿电压VT。

VT=2.1/430(T-25)VF

6.计算太阳能电池阵列工作电压VP。

VP=VF+VD+VT

其中VD=0.5~0.7

约等于VF

7.太阳电池阵列输出功率WP?平板式太阳能电板。

WP=IP×UP

8.根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。

折叠 编辑本段 其他资料

折叠 新型太阳电池

目前市场上大量产的单晶与多晶硅的太阳电池平均效率约在15%上下,也就是说,这样的太阳电池只能将入射太阳光能转换成15%可用电能,其余的85%都浪费成无用的热能。所以严格地说,现今太阳电池,也是某种型式的“浪费能源”。当然理论上,只要能有效的抑制太阳电池内载子和声子的能量交换,换言之,有效的抑制载子能带内或能带间的能量释放,就能有效的避免太阳电池内无用的热能的产生,大幅地提高太阳电池的效率,甚至达到超高效率的运作。而这样简易的理论构想,在实际的技术上,却可以用不同的方法来执行这样的原则。超高效率的太阳电池(第三代太阳电池)的技术发展,除了运用新颖的元件结构设计,来尝试突破其物理限制外,也有可能因为新材料的引进,而达成大幅增加转换效率的目的。 

薄膜太阳电池 包括非晶硅太阳电池,CdTe 和 CIGS(copper indium gallium selenide)电池。虽然目前多数量产薄膜太阳电池转换效率仍无法与晶硅太阳电池抗衡,但是其低制造成本仍然使其在市场有一席之地,且未来市场占有率仍会持续成长。

折叠 染料敏化太阳电池

染料感光太阳电池(Dye-sensitized solar cell,DSSC)是最近被开发出来的一种崭新的太阳电池。DSsC也被称为Grätzel cell,因为是在1991年由Grätzel等人发表的构造和一般光伏特电池不同,其基板通常是玻璃,也可以是透明且可弯曲的聚合箔(polymer foil),玻璃上有一层透明导电的氧化物(transparent conducting oxide,TCO)通常是使用FTO(SnO2:F),然后长有一层约10微米厚的porous纳米尺寸的 TiO2粒子(约10~20 nm)形成一nano-porous薄膜。然后涂上一层染料附着于TiO2的粒子上。通常染料是采用ruthenium polypyridyl complex。上层的电极除了也是使用玻璃和TCO外,也镀上一层铂当电解质反应的催化剂,二层电极间,则注入填满含有iodide/triiodide电解质。虽然目前DSC电池的最高转换效率约在12%左右(理论最高29﹪),但是制造过程简单,所以一般认将大幅降低生产成本,也同时降低每度电的电费。

折叠 串叠型电池

串叠型电池(Tandem Cell)属于一种运用新颖原件结构的电池,借由设计多层不同能隙的太阳能电池来达到吸收效率最佳化的结构设计。目前由理论计算可知,如果在结构中放入越多层数的电池,将可把电池效率逐步提升,甚至可达到50%的转换效率。

折叠 光纤太阳能电池

光纤太阳能电池(Fiber-based solar cell 或者Fiber cell)由美国Wake Forest University纳米与分子研究中心首先提出,并在美国《Applied Physics Letters》(doi:10.1063/1.3263947)和《Physical Review B》(DOI: 10.1103/PhysRevB.84.085206,2011)上报道了这种电池的最新成果。目前,它利用特有的光纤结构,并结合有机吸收层,达到了超出平面电池的吸收效率,并已被证明能够很好的应用到超光强的聚光型电站中。

折叠 透明太阳能电池

据美国物理学家组织网近日报道,美国能源部布鲁克海文国家实验室和洛斯阿拉莫斯国家实验室的科学家们研发出了一种可吸收光线并将其大面积转化成为电能的新型透明薄膜。这种薄膜以半导体和富勒烯为原料,具有微蜂窝结构。相关研究发表在最新一期的《材料化学》杂志上,论文称该技术可被用于开发透明的太阳能电池板,甚至还可以用这种材料制成可以发电的窗户。 这种材料由掺杂碳富勒烯的半导体聚合物组成。在严格控制的条件下,该材料可通过自组装方式由一个微米尺度的六边形结构展开为一个数毫米大小布满微蜂窝结构的平面。

负责该研究的美国布鲁克海文国家实验室多功能纳米材料中心的物理化学家米尔恰·卡特莱特说,虽然这种蜂窝状薄膜的制作采用了与传统高分子材料(如聚苯乙烯)类似的工艺,但以半导体和富勒烯为原料,并使其能够吸收光线产生电荷这还是第一次。

据介绍,该材料之所以还能在外观上保持透明是因为聚合物链只与六边形的边缘紧密相连,而其余部分的结构则较为简单,以连接点为中心向外越来越薄。这种结构具有连接作用,同时具有较强的吸收光线的能力,也有利于传导电流,而其他部分相对较薄也更为透明,主要起透光的作用。

研究人员通过一种十分独特的方式来编织这种蜂窝状薄膜:首先在包含聚合物以及富勒烯在内的溶液中加入一层极薄的微米尺度的小水滴。这些水滴在接触到聚合物溶液后就会自组装成大型阵列,而当溶剂完全蒸发后,就会形成一块大面积的六边形蜂窝状平面。此外,研究人员发现聚合物的形成与溶剂的蒸发速度紧密相关,这相应地又会决定最终材料的电荷传输速度。溶剂蒸发得越慢,聚合物的结构就越紧凑,电荷传输速度也就越快。

“这是一种成本低廉而效益显著的制备方法,很有潜力从实验室应用到大规模商业化生产之中。”卡特莱特说。

通过扫描探针式电子显微镜和荧光共焦扫描显微镜,研究人员证实了新材料蜂窝结构的均匀性,并对其不同部位(边缘、中心、节点)的光学性质和电荷产生情况进行了测试。

卡特莱特表示:“我们的工作让人们对蜂窝结构的光学特征有了更深的了解。下一步我们计划将这种材料应用于透明且可卷曲的柔性太阳能电池以及其他设备的制造当中,以推动这种蜂窝薄膜尽快进入实用阶段。”    

参考资料

阅读全文

热点资讯